
Tivoli® IBM Tivoli NetView for z/OS

Customization Guide

Version 5 Release 3

SC31-8859-02

���

Tivoli® IBM Tivoli NetView for z/OS

Customization Guide

Version 5 Release 3

SC31-8859-02

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 199.

This edition applies to version 5, release 3 of IBM Tivoli NetView for z/OS (product number 5697-ENV) and to all

subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using

the correct edition for the level of the product.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . vii

About this publication . ix

Intended audience . ix

Publications . ix

IBM Tivoli NetView for z/OS library . ix

Prerequisite publications . x

Related publications . xi

Accessing terminology online . xi

Using LookAt to look up message explanations . xii

Accessing publications online . xiii

Ordering publications . xiii

Accessibility . xiv

Tivoli technical training . xiv

Support information . xiv

Downloads . xiv

Conventions used in this publication . xv

Typeface conventions . xv

Operating system-dependent variables and paths . xv

Syntax Diagrams . xvi

Chapter 1. Designing Functions . 1

Customization Areas . 1

Functions to Consider before Making Modifications . 3

Finding Customization Information . 3

Collecting Data . 5

Data Storage and Recording . 6

Operator Presentation . 6

Tasks . 7

NetView Program as a System Application Program . 7

NetView Program Tasks . 7

Program Activity within a Task . 8

Queuing Work to NetView Program Tasks . 9

Message and Command Buffers . 9

Immediate Commands . 9

Long-Running Commands . 9

Data Services Commands . 10

Defining User-Written Programs on the Host: Exits and Commands 10

Installation Exit Programs . 10

Command Processors and Command Lists . 11

Adding Optional Tasks to the NetView Program . 12

Choosing a Language . 12

Input and Output . 12

Performance . 13

Stability . 13

Testing . 13

Speed of Implementation . 13

REXX Versus the NetView Command List Language . 13

Language Choices by Function . 14

Logging . 15

Cross-Reference for Message and Environment Functions 15

Customizing PF Keys and Immediate Message Line . 24

Modifying CNMKEYS . 25

Chapter 2. Customizing the NetView Command Facility Panel 27

© Copyright IBM Corp. 1997, 2007 iii

Using a Screen Format Definition . 27

Screen Format Definition Statements . 27

Message Color and Highlighting . 30

Chapter 3. Using the VIEW Command . 31

Creating Full-Screen Panels . 31

General Help Fields . 32

Coding the VIEW Command . 35

Return Codes from VIEW and BROWSE . 37

Displaying VIEW Return Codes with SHOWCODE . 37

Controlling Color and Highlighting of Fields . 38

Attribute Symbols . 38

Displaying Special Attributes . 39

Attribute Variables . 40

Displaying Variables in Source Panels . 43

Compound Symbols . 45

Issuing Commands from Command Procedures . 46

Creating a Rollable Component with VIEW . 47

Full-Screen Input Capabilities . 50

Returning Command Line Input . 57

Using PF Keys and Subcommands with VIEW . 57

Using PF Keys and Subcommands with the NOINPUT Option 58

Using PF Keys and Subcommands with the INPUT Option 58

Dynamic Update Capabilities . 59

Sample of Panel Updating . 60

Changing Colors in Browse . 62

Chapter 4. Modifying and Creating Online Help Information 65

Locating Help Source Files . 65

View-Based Help . 66

Window-Based Help . 66

Copying and Changing Help Source Files . 69

Storing Help Source Files . 70

HELPMAP Facility . 70

Displaying New Help Panels . 71

Chapter 5. Customizing Session Monitor Sense Descriptions 73

Session Monitor Sense Codes . 73

Examples . 74

Chapter 6. Customizing Hardware Monitor Displayed Data 77

Modifying Hardware Monitor Nongeneric Panels . 77

Determining a Panel Name . 77

Changing Panel Text . 80

Nongeneric Alert Messages . 82

Using the ACTION Command List . 83

Overlaying Recommended Action Numbers . 83

Modifying BNJDNUMB, BNJDNAME, and BNJwwwww 84

Changing Color and Highlighting for Hardware Monitor Panels 87

Selecting the Color Map . 88

Modifying the Color Map . 88

Prompt Highlight Tokens . 91

Using NMVT Support for User-Written Programming . 92

User-Defined Alerts (Nongeneric) . 92

User-Defined Alerts (Generic) . 93

Building Generic Alert Panels . 94

Alerts-Dynamic Panel . 96

Recommended Action for Selected Event Panel . 97

Event Detail Panel . 99

Modifying Generic Code Point Tables . 101

iv Customization Guide

Adding or Modifying Resource Types . 104

Chapter 7. Modifying Network Asset Management Command Lists 105

VPD Collection from a Single PU . 106

VPD Collection from a Single NetView Domain . 107

Focal Point VPD Collection . 107

Customization Considerations . 108

Chapter 8. Customizing the Event/Automation Service 111

The Event/Automation Service: Overview . 111

Starting the Event/Automation Service . 112

Customizing the Initialization of the Event/Automation Service 112

Defaults for Configurable Settings . 112

Customizing the Event/Automation Startup Parameters 115

Customizing the Event/Automation Service Configuration Files 117

Event/Automation Service Output . 118

Event/Automation Service Output Log Names . 119

Types of Event/Automation Service Output Data . 120

Format of Event/Automation Service Output Data . 120

Customizing Alert and Message Routing from NetView 121

Running More Than One Event/Automation Service . 121

Advanced Customization - Translating Data . 122

Class Definition Statement Files . 122

Encoding Incoming Event Data . 124

Alert Adapter Service and Alert-to-Trap Service Data Encoding 124

Alert-to-Trap Service Data Encoding . 127

Trap-to-Alert Service Data Encoding . 128

Event Receiver Service Data Encoding . 129

SELECT Segment of a Class Definition Statement . 129

FETCH Segment of a Class Definition Statement . 132

MAP Segment of a Class Definition Statement . 132

Message Format Files . 134

Event Receiver Post-CDS Processing . 140

The Input Attribute List . 141

The Output Pseudo Event . 141

Translating ASCII Text Data . 154

Translating SNMP Non-String Data Types . 154

Trap-to-Alert Post-CDS Processing . 157

Advanced Customization - Trap-to-Alert Forwarding Daemon 157

Detailed Example for Trap-to-Alert Conversion . 158

Alert-to-Trap Post-CDS Processing . 165

Chapter 9. NetView Instrumentation . 167

Considerations . 167

Customization . 167

Starting and Stopping Instrumentation . 169

Customizing the IBM Tivoli Enterprise Console . 170

ACB Monitor Customization . 170

Parts . 171

Defining a Focal Point . 171

Defining An Entry Point . 172

Starting the VTAM ACB Monitor . 173

Stopping the VTAM ACB Monitor . 173

Chapter 10. Writing a Java Application for the NetView 3270 Management Console 175

Writing a NetView 3270 Management Console Host Access Class Library Application 175

Building Host Access Class Library Applications . 177

Source Code Preparation . 177

Compilation . 177

Running the HACL Application . 177

Contents v

Helper Class . 177

Sample Applications . 178

Chapter 11. Designing HTML Files for the NetView Web Server 179

Referencing Files and Commands . 179

Understanding the Base URL . 179

Adding Tasks and Links to the Portfolio . 179

Using REXX to Generate HTML . 180

Chapter 12. Customizing Using Common Base Events 181

XML Formats . 181

CBE Format Rules . 182

Template File CNMSCBET . 182

Codepage considerations . 184

Predefined Variables . 184

Appendix A. Color Maps for Hardware Monitor Panels 189

Appendix B. NetView Macros and Control Blocks 193

General-Use Programming Interface Control Blocks and Include Files 193

Product-Sensitive Programming Interfaces . 197

Notices . 199

Trademarks . 201

Index . 203

vi Customization Guide

Figures

 1. Required Syntax Elements xvi

 2. Optional Syntax Elements xvii

 3. Default Keywords and Values xvii

 4. Syntax Fragments xviii

 5. Structural Overview of the Command Facility 8

 6. Program Design Example for DST Function 11

 7. Excerpt from CNMKEYS Sample to Set PF

Keys 25

 8. NetView Message Panel 28

 9. Example of Source for General Help

Information 32

10. Example of a REXX Program Requesting

Values of Variables for a VIEW 46

11. VIEWICCOL and VIEWICROW Examples 51

12. Source for First Panel with Input-Capable

Variables and Command Line 53

13. Source for Second Panel with Command Line

Only 53

14. Example of a REXX Command List that Drives

a Rollable Component 54

15. Display Panel of Component with Variables

Replaced by REXX Command List 56

16. Display Panel of Component 57

17. Example of a REXX Command List to Update

a Panel 61

18. RESDYN Command List Output Example 62

19. CNMSRESP Source Panel Text 62

20. BROWSE Command Panel Definition Showing

Color Attributes 63

21. Example of Using the SHOWDATA Command

to Locate Help Source Files 66

22. Example of Source for Message and Command

Help Information 67

23. Example of Using :IF DTYPE= and :LINK. 69

24. Example of the HELPMAP 71

25. CNMB08B Sense Code Help 74

26. Sample BNJBLKID Table 79

27. Sample BNJALxxx Table 80

28. Recommended Action Panel for Selected Event 84

29. Sample BNJDNAME Table 86

30. Sample BNJwwwww User-Defined Table 87

31. Sample Color Map 89

32. Sample Generic Alert Record 95

33. Sample of Alerts-Dynamic Panel 96

34. Sample of Recommended Action for a Selected

Event Panel 97

35. Sample of Event Detail Panel (Page 1) 99

36. Sample of Event Detail Panel (Page 2) 99

37. Sample of BNJ92TBL Code Points Table 103

38. Sample of BNJ94TBL Code Points Table 103

39. Sample Contents of BNJRESTY 104

40. VPD Focal Point NetView Program 107

© Copyright IBM Corp. 1997, 2007 vii

viii Customization Guide

About this publication

The IBM® Tivoli® NetView® for z/OS® product provides advanced capabilities that

you can use to maintain the highest degree of availability of your complex,

multi-platform, multi-vendor networks and systems from a single point of control.

This publication, the IBM Tivoli NetView for z/OS Customization Guide, describes the

parts of the NetView program that you can customize and points you to sources of

related information.

Intended audience

This publication is for system programmers who customize the NetView program.

Publications

This section lists publications in the IBM Tivoli NetView for z/OS library and

related documents. It also describes how to access Tivoli publications online and

how to order Tivoli publications.

IBM Tivoli NetView for z/OS library

The following documents are available in the Tivoli NetView for z/OS library:

v Administration Reference, SC31-8854, describes the NetView program definition

statements required for system administration.

v Application Programmer’s Guide, SC31-8855, describes the NetView

program-to-program interface (PPI) and how to use the NetView application

programming interfaces (APIs).

v Automated Operations Network Customization Guide, SC31-8871, describes how to

tailor and extend the automated operations capabilities of the NetView

Automated Operations Network (AON) component, which provides

event-driven network automation.

v Automated Operations Network User’s Guide, GC31-8851, describes how to use the

Automated Operations Network component to improve system and network

efficiency.

v Automation Guide, SC31-8853, describes how to use automated operations to

improve system and network efficiency and operator productivity.

v Command Reference Volume 1, SC31-8857, and Command Reference Volume 2,

SC31-8858, describe the NetView commands, which can be used for network and

system operation and in command lists and command procedures.

v Customization Guide, SC31-8859, describes how to customize the NetView product

and points to sources of related information.

v Data Model Reference, SC31-8864, provides information about the Graphic

Monitor Facility host subsystem (GMFHS), SNA topology manager, and

MultiSystem Manager data models.

v Installation: Configuring Additional Components, SC31-8874, describes how to

configure NetView functions beyond the base functions.

v Installation: Configuring Graphical Components, SC31-8875, describes how to install

and configure the NetView graphics components.

v Installation: Getting Started, SC31-8872, describes how to install and configure the

NetView base functions.

© Copyright IBM Corp. 1997, 2007 ix

v Installation: Migration Guide, SC31-8873, describes the new functions provided by

the current release of the NetView product and the migration of the base

functions from a previous release.

v Installation: Configuring the Tivoli NetView for z/OS Enterprise Agents, SC31-6969,

describes how to install and configure the Tivoli NetView for z/OS enterprise

agents.

v Messages and Codes Volume 1 (AAU-DSI), SC31-6965, and Messages and Codes

Volume 2 (DUI-IHS), SC31-6966, describe the messages for the NetView product,

the NetView abend codes, the sense codes that are shown in NetView messages,

and generic alert code points.

v MultiSystem Manager User’s Guide, GC31-8850, describes how the NetView

MultiSystem Manager component can be used in managing networks.

v NetView Management Console User’s Guide, GC31-8852, provides information

about the NetView management console interface of the NetView product.

v Programming: Assembler, SC31-8860, describes how to write exit routines,

command processors, and subtasks for the NetView product using assembler

language.

v Programming: Pipes, SC31-8863, describes how to use the NetView pipelines to

customize a NetView installation.

v Programming: PL/I and C, SC31-8861, describes how to write command processors

and installation exit routines for the NetView product using PL/I or C.

v Programming: REXX and the NetView Command List Language, SC31-8862, describes

how to write command lists for the NetView product using the Restructured

Extended Executor language (REXX™) or the NetView command list language.

v Resource Object Data Manager and GMFHS Programmer’s Guide, SC31-8865,

describes the NetView Resource Object Data Manager (RODM), including how

to define your non-SNA network to RODM and use RODM for network

automation and for application programming.

v Security Reference, SC31-8870, describes how to implement authorization checking

for the NetView environment.

v SNA Topology Manager Implementation Guide, SC31-8868, describes planning for

and implementing the NetView SNA topology manager, which can be used to

manage subarea, Advanced Peer-to-Peer Networking®, and TN3270 resources.

v Troubleshooting Guide, LY43-0093, provides information about documenting,

diagnosing, and solving problems that might occur in using the NetView

product.

v Tuning Guide, SC31-8869, provides tuning information to help achieve certain

performance goals for the NetView product and the network environment.

v User’s Guide, GC31-8849, describes how to use the NetView product to manage

complex, multivendor networks and systems from a single point.

v Web Application User’s Guide, SC32-9381, describes how to use the NetView Web

application to manage complex, multivendor networks and systems from a

single point.

v Licensed Program Specifications, GC31-8848, provides the license information for

the NetView product.

Prerequisite publications

To read about the new functions offered in this release, see the IBM Tivoli NetView

for z/OS Installation: Migration Guide.

x Customization Guide

For information about how the NetView for z/OS product interacts with the IBM

Tivoli Monitoring product, see the following IBM Tivoli Monitoring publications:

v Introducing IBM Tivoli Monitoring, GI11-4071, introduces the components,

concepts, and function of IBM Tivoli Monitoring.

v IBM Tivoli Monitoring: Upgrading from Tivoli Distributed Monitoring, GC32-9462,

provides information on how to upgrade from IBM Tivoli Distributed

Monitoring.

v IBM Tivoli Monitoring: Installation and Setup Guide, GC32-9407, provides

information about installing and setting up IBM Tivoli Monitoring.

v IBM Tivoli Monitoring User’s Guide, SC32-9409, which complements the IBM

Tivoli Enterprise™ Portal online help, provides hands-on lessons and detailed

instructions for all Tivoli Enterprise Portal functions.

v IBM Tivoli Monitoring Administrator’s Guide, SC32-9408, describes the support

tasks and functions required for the IBM Tivoli Enterprise Portal Server and

clients.

v Configuring IBM Tivoli Enterprise Monitoring Server on z/OS, SC32-9463, describes

how to configure and customize the IBM Tivoli Enterprise Monitoring Server

running on a z/OS system.

v IBM Tivoli Monitoring Problem Determination Guide, GC32-9458, provides

information and messages to use in troubleshooting problems with the software.

v Exploring IBM Tivoli Monitoring, SC32-1803, provides a series of exercises for

exploring IBM Tivoli Monitoring.

v IBM Tivoli Universal Agent User’s Guide, SC32-9459, introduces the IBM Tivoli

Universal Agent.

v IBM Tivoli Universal Agent API and Command Programming Reference Guide,

SC32-9461, explains how to implement the IBM Tivoli Universal Agent APIs and

describes the API calls and command-line interface commands.

Related publications

For information about the NetView Bridge function, see Tivoli NetView for OS/390

Bridge Implementation, SC31-8238-03 (available only in the V1R4 library).

You can find additional product information on the NetView for z/OS Web site:

http://www.ibm.com/software/tivoli/products/netview-zos/

Accessing terminology online

The Tivoli Software Glossary includes definitions for many of the technical terms

related to Tivoli software. The Tivoli Software Glossary is available at the following

Tivoli software library Web site:

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm

The IBM Terminology Web site consolidates the terminology from IBM product

libraries in one convenient location. You can access the Terminology Web site at the

following Web address:

http://www.ibm.com/software/globalization/terminology/

For a list of NetView for z/OS terms and definitions, refer to the IBM Terminology

Web site. The following terms are used in this library:

About this publication xi

http://www.ibm.com/software/tivoli/products/netview-zos/
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/globalization/terminology/

NetView

For the following products:

v Tivoli NetView for z/OS version 5 release 3

v Tivoli NetView for z/OS version 5 release 2

v Tivoli NetView for z/OS version 5 release 1

v Tivoli NetView for OS/390® version 1 release 4

MVS™ For z/OS operating systems

MVS element

For the BCP element of the z/OS operating system

CNMCMD

For CNMCMD and its included members

CNMSTYLE

For CNMSTYLE and its included members

PARMLIB

For SYS1.PARMLIB and other data sets in the concatenation sequence

The following IBM names replace the specified Candle® names:

IBM Tivoli Monitoring Services

For OMEGAMON® platform

IBM Tivoli Enterprise Monitoring Agent

For Intelligent Remote Agent

IBM Tivoli Enterprise Monitoring Server

For Candle Management Server

IBM Tivoli Enterprise Portal

For CandleNet Portal

IBM Tivoli Enterprise Portal Server

For CandleNet Portal Server

Unless otherwise indicated, references to programs indicate the latest version and

release of the programs. If only a version is indicated, the reference is to all

releases within that version.

When a reference is made about using a personal computer or workstation, any

programmable workstation can be used.

Using LookAt to look up message explanations

LookAt is an online facility that you can use to look up explanations for most of

the IBM messages you encounter, as well as for some system abends (an abnormal

end of a task) and codes. Using LookAt to find information is faster than a

conventional search because in most cases LookAt goes directly to the message

explanation.

You can use LookAt from the following locations to find IBM message

explanations for z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for

AIX® and Linux®:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

xii Customization Guide

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations, using LookAt from a TSO/E

command line (for example, TSO/E prompt, ISPF, or z/OS UNIX® System

Services running OMVS).

v Your Microsoft® Windows® workstation. You can install code to access IBM

message explanations on the z/OS Collection (SK3T-4269), using LookAt from a

Microsoft Windows DOS command line.

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from a disk on your z/OS Collection (SK3T-4269), or from the LookAt

Web site (click Download, and select the platform, release, collection, and location

that suit your needs). More information is available in the LOOKAT.ME files

available during the download process.

Accessing publications online

The documentation CD contains the publications that are in the product library.

The publications are available in Portable Document Format (PDF), HTML, and

BookManager® formats. Refer to the readme file on the CD for instructions on how

to access the documentation.

An index is provided on the documentation CD for searching the Tivoli NetView

for z/OS library. If you have Adobe Acrobat on your system, you can use the

Search command to locate specific text in the library. For more information about

using the index to search the library, see the online help for Acrobat.

IBM posts publications for this and all other Tivoli products, as they become

available and whenever they are updated, to the Tivoli Information Center Web

site at http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp.

In the Tivoli Information Center window, click Tivoli product manuals. Click the

letter that matches the first letter of your product name to access your product

library. For example, click N to access the Tivoli NetView for z/OS library.

Note: If you print PDF documents on other than letter-sized paper, set the option

in the File → Print window that enables Adobe Reader to print letter-sized

pages on your local paper.

Ordering publications

You can order many Tivoli publications online at the following Web address:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

 You can also order by telephone by calling one of these numbers:

v In the United States: 800-879-2755

v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli

publications. To locate the telephone number of your local representative, perform

the following steps:

About this publication xiii

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

1. Go to the following Web address:

http://www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi

2. Select your country from the list and click Go. The Welcome to the IBM

Publications Center window is displayed.

3. On the left side of the window, click About this site to see an information page

that includes the telephone number of your local representative.

Accessibility

Accessibility features help users with a physical disability, such as restricted

mobility or limited vision, to use software products successfully. Standard shortcut

and accelerator keys are used by the product and are documented by the operating

system. Refer to the documentation provided by your operating system for more

information.

For additional information, see the Accessibility appendix in the User’s Guide.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli

Education Web site at http://www.ibm.com/software/tivoli/education.

Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM

provides the following ways for you to obtain the support you need:

Online

Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant

The IBM Support Assistant (ISA) is a free local software serviceability

workbench that helps resolve questions and problems with IBM software

products. The ISA provides quick access to support-related information

and serviceability tools for problem determination. To install the ISA

software, go to http://www.ibm.com/software/support/isa.

 Problem determination guide

For more information about resolving problems, see the IBM Tivoli NetView

for z/OS Troubleshooting Guide.

Downloads

Clients and agents, demonstrations of the NetView product, and several free

NetView applications that you can download are available at the NetView for

z/OS Web site:

http://www.ibm.com/software/tivoli/products/netview-zos/

These applications can help with the following tasks:

v Migrating customization parameters from earlier releases to the current style

sheet

xiv Customization Guide

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/tivoli/products/netview-zos/

v Getting statistics for your automation table and merging the statistics with a

listing of the automation table

v Displaying the status of a job entry subsystem (JES) job or canceling a specified

JES job

v Sending alerts to the NetView program using the program-to-program interface

(PPI)

v Sending and receiving MVS commands using the PPI

v Sending Time Sharing Option (TSO) commands and receiving responses

Conventions used in this publication

This publication uses several conventions for special terms and actions, operating

system-dependent commands and paths, and command syntax.

Typeface conventions

This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise

difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin

buttons, fields, folders, icons, list boxes, items inside list boxes,

multicolumn lists, containers, menu choices, menu names, tabs, property

sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs

v Words defined in text (example: a nonswitched line is called a

point-to-point line)

v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The

LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a

workspace that contains data.

v Variables and values you must provide: ... where myname represents...

Monospace

v Examples and code examples

v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text

v Message text and prompts addressed to the user

v Text that the user must type

v Values for arguments or command options

Operating system-dependent variables and paths

For workstation components, this publication uses the UNIX convention for

specifying environment variables and for directory notation.

When using the Windows command line, replace $variable with %variable% for

environment variables and replace each forward slash (/) with a backslash (\) in

directory paths. The names of environment variables are not always the same in

About this publication xv

the Windows and UNIX environments. For example, %TEMP% in Windows

environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX

conventions.

Syntax Diagrams

Syntax diagrams start with double arrowheads on the left (��) and continue along

the main syntax line until they end with two arrowheads facing each other (��).

When more than one line is needed for a syntax diagram, the continued lines end

with a single arrowhead (�).

Position and Appearance of Syntax Elements

Syntax diagrams do not rely on highlighting, brackets, or braces. In syntax

diagrams, the position of the elements relative to the main syntax line indicates the

required, optional, and default values for keywords, variables, and operands as

shown in the following table.

 Table 1. Position of Syntax Elements

Element Position Meaning

On the main syntax line Required

Above the main syntax line Default

Below the main syntax line Optional

Keywords and operands are shown in uppercase letters. Variables are shown in

lowercase letters and are either italicized or, for NetView help and BookManager

online publications, shown in a differentiating color. The appearance of syntax

elements indicates the type of element as shown in the following table.

 Table 2. Appearance of Syntax Elements

Element Appearance

Keyword CCPLOADF

Variable resname

Operand MEMBER=membername

Default today or INCL

Required Syntax Elements

The command name and the required keywords, variables, and operands are

shown on the main syntax line. Figure 1 shows that the resname variable must be

used for the CCPLOADF command.

Optional Syntax Elements

Optional keywords, variables, and operands are shown below the main syntax line.

Figure 2 on page xvii shows that the ID operand can be used for the DISPREG

CCPLOADF

�� CCPLOADF resname ��

Figure 1. Required Syntax Elements

xvi Customization Guide

command but is not required.

Default Keywords and Values

Default keywords and values are shown above the main syntax line.

If the default is a keyword, it is shown only above the main line. You can specify

this keyword or allow it to default. Figure 3 shows the default keyword STEP

above the main line and the rest of the optional keywords below the main line.

If an operand has a default value, the operand is shown both above and below the

main line. A value below the main line indicates that if you specify the operand,

you must also specify either the default value or another value shown. If you do

not specify the operand, the default value above the main line is used. Figure 3

shows the default values for operands MODNAME=* and OPTION=* above and below

the main line.

Syntax Fragments

Commands that contain lengthy sections of syntax or a section that is used more

than once in a command are shown as separate fragments following the main

diagram. The fragment name is shown in mixed case. Figure 4 on page xviii shows

a syntax diagram with the fragments Pu, PurgeAll, and PurgeBefore.

DISPREG

�� DISPREG

ID=resname
 ��

Figure 2. Optional Syntax Elements

RID

��

RID TASK=opid
 ,STEP

,CONTINUE

,END

,RUN

 ,MODNAME=*

,MODNAME=

*

name

�

�
 ,OPTION=*

,OPTION=

*

HAPIENTR

HAPIEXIT

��

Figure 3. Default Keywords and Values

About this publication xvii

Commas and Parentheses

Required commas and parentheses are shown in the syntax diagram.

When an operand can have more than one value, the values are typically enclosed

in parentheses and separated by commas. For example, in Figure 4, the OP

operand contains commas to indicate that you can specify multiple values for the

testop variable.

If a command requires positional commas to separate keywords and variables, the

commas are shown before the keyword or variable, as in Figure 3 on page xvii.

Commas are also used to indicate the absence of a positional operand. In the

following example of the BOSESS command, the second comma indicates that an

optional operand is not being used:

NCCF BOSESS applid,,sessid

You do not need to specify the trailing positional commas. Trailing positional and

non-positional commas either are ignored or cause a command to be rejected.

Restrictions for each command state whether trailing commas cause the command

to be rejected.

Abbreviations

Command and keyword abbreviations are listed in synonym tables after each

command description.

CSCF

�� CSCF Pu

PurgeAll

PurgeBefore

 ��

Pu

�

 PU=resname

,

,OP=(

testop

)

PurgeAll

 PURGE ALL

PurgeBefore

 PURGE BEFORE date

time

Figure 4. Syntax Fragments

xviii Customization Guide

Chapter 1. Designing Functions

NetView enables you to manage complex, multivendor networks and systems from

a single point. This chapter describes what you need to know before making an

addition or change to the NetView program, and shows some of the facilities

available to help you customize tasks.

Customization Areas

Customizing NetView takes place at various stages of network and system

implementation. These topics are described in several NetView books. See Table 3

on page 3 for the NetView books that contain more information on the listed

topics.

F

Alias names are used to communicate across networks. You can use alias names to

resolve conflicts when duplicate resource names exist in multiple networks. With

alias names, the name of the resource, such as a logical unit (LU), a class of

service, a source LU (SRCLU), or a LOGON mode table from the sending network,

is translated to a name that is unique to the receiving network. Refer to IBM Tivoli

NetView for z/OS Installation: Getting Started for more information about how to

define alias names.

Filtering controls the amount of data presented to operators. Filtering also controls

the amount of data recorded in the network log. The NetView automation table

allows you to control the types of messages that each of your network operators

receives, and the amount of data recorded to message logs. Refer to the IBM Tivoli

NetView for z/OS Automation Guide for descriptions of automation statements and

descriptions of how to use automation statements to suppress (filter) messages.

You can also filter event data that network resources send to the hardware monitor.

Recording filters control the information that is recorded in the hardware monitor’s

database. Viewing filters determine the records that appear on each network

operator’s terminal. You can find more information on hardware monitor filtering

by referring to the IBM Tivoli NetView for z/OS User’s Guide or the IBM Tivoli

NetView for z/OS Automation Guide for a description of how to use automation

statements to set recording filters for specific events. You can also refer to the

NetView online help for the SRF and SVF commands.

Focal point support enables NetView to be defined as either a focal point node or

a distributed entry point node. A focal point is a central network node that

receives information from distributed entry point network nodes. The information

forwarded from the entry points to the focal point can be messages, alerts, or

MSUs. For more information on NetView focal point support, refer to the IBM

Tivoli NetView for z/OS Automation Guide.

You can use automation to implement automatic responses to events that occur in

your network. Refer to the IBM Tivoli NetView for z/OS Automation Guide for more

information about defining NetView automation statements to improve the

productivity of your system operators and your network operators. For additional

information the NetView program’s automation, refer to the IBM Tivoli NetView for

z/OS Automation Guide.

© Copyright IBM Corp. 1997, 2007 1

Use Generic alerts and code points to obtain problem determination support for

devices and applications in your network that the NetView program does not

automatically support. Chapter 6, “Customizing Hardware Monitor Displayed

Data,” on page 77 contains information on how to use the NetView-provided and

user-defined code point tables to build hardware monitor Alerts-Dynamic,

Alerts-Static, Alerts-History, Event Detail, and Most Recent Events panels.

National Language Support (NLS) allows your operators to interact with the

NetView program in a language other than English. Refer to IBM Tivoli NetView for

z/OS Installation: Configuring Additional Components for a description of how to

write your own message translations in any other supported language. The

Japanese National Language version provides a Japanese version of NetView

panels and messages.

You might need to consider operator control and security. To control who can gain

access to the NetView program and what effect an operator can have on your

network, you should consider some level of logon verification, command

authorization, and span of control. Refer to the IBM Tivoli NetView for z/OS Security

Reference for a complete description of how to implement the different levels of

security verification available in the NetView program, how to limit the commands

an operator can issue (command authorization), and which part of the network’s

resources an operator can control (span of control).

You can modify the color and format of the NetView command facility panel.

Refer to Chapter 2, “Customizing the NetView Command Facility Panel,” on page

27 for more information.

You can create or change panels for your online help, online message help,

NetView help desk, the hardware monitor, and any user-written, full-screen

applications. For a detailed explanation of how to create new panels or modify

Tivoli-supplied panels for these components, see Chapter 4, “Modifying and

Creating Online Help Information,” on page 65 or Chapter 6, “Customizing

Hardware Monitor Displayed Data,” on page 77.

Sequential logging (sequential access method log support) enables you to write

variable length records to multiple user-defined logs. You can browse or print

these logs using your operating system facilities. For more information about

defining sequential log tasks, refer to the IBM Tivoli NetView for z/OS Installation:

Configuring Additional Components, IBM Tivoli NetView for z/OS Programming:

Assembler, or IBM Tivoli NetView for z/OS Programming: PL/I and C.

Session monitor data can be collected and kept in the session monitor database. To

control how much session data is collected and kept, customize several session

monitor definition statements. Refer to theIBM Tivoli NetView for z/OS Installation:

Configuring Additional Components for more information. Defining performance

classes for the response time monitor (RTM) feature is also described in IBM Tivoli

NetView for z/OS Installation: Configuring Additional Components. Objectives and

boundaries are set for each performance class, and a performance class is then

chosen for a session.

User-written functions add new function to the NetView program or modify

existing ones. You might want to develop your own command lists and

user-written code. Refer to the IBM Tivoli NetView for z/OS Programming: REXX and

the NetView Command List Language for an overview of writing command lists in

REXX or in NetView command list language to help you control your network and

make the operators’ jobs easier. You can find information about writing code such

Customizing NetView

2 Customization Guide

as command procedures and installation exits in IBM Tivoli NetView for

z/OS Programming: PL/I and C. Information on writing command processors,

installation exit routines, and user subtasks in assembler language can be found in

IBM Tivoli NetView for z/OS Programming: Assembler.

The NetView Resource Object Data Manager (RODM) is a data cache that stores

network configuration and status information about system resources. RODM

enables you to automate network management functions associated with the

resources defined to RODM. In addition, you can write RODM applications to

perform other network management and automation tasks. Refer to the IBM Tivoli

NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide for

more information.

Functions to Consider before Making Modifications

To customize NetView functions, you can write your own command procedures or

modify one of the existing command procedures supplied by the NetView

program. Ways to modify existing functions include:

v Filtering or modifying the system management facility (SMF) records written by

NetView

v Providing a policy that routes operator messages

v Reformatting, analyzing, or editing operator messages

v Checking command authority

Additional functions you might want to add involve managing additional

components in your network, such as X.25 data network components or voice

network components. You can develop new applications and integrate them with

existing management functions to meet your requirements. Examples of these

user-defined functions include:

v Real-time monitoring of specific resources, applications, or components in your

network

v Collecting and recording additional SMF data for trend analysis or other data

reduction applications you need

v Providing additional response time problem detection and alerting

v Detecting different classes of line problems and providing switched network

backup (SNBU).

Finding Customization Information

Table 3 lists customization topics and provides the name of the documentation that

includes information about that topic.

 Table 3. Customization Topics and Documentation

Topic CGD GET OLH CLS PLC ASL AUT PIP ASR NUG ADV

Alias names X X

Command Facility

 Screen Format

 X

 X

 X

Automation X X X

Generic alerts X X

Customizing NetView

Chapter 1. Designing Functions 3

Table 3. Customization Topics and Documentation (continued)

Topic CGD GET OLH CLS PLC ASL AUT PIP ASR NUG ADV

National Language

 Support

 X

Operator control:

Logon security

Command security

Span of control

 X

 X

 X

Panels:

Hardware monitor*

Help

Help desk

User-written

 X

 X

 X

 X

 X

 X

 X

 X

Sequential logging X X X X

Session monitor data:*

Response time monitor

monitor

Session awareness

 X

 X

Suppressing:

Message

Hardware monitor*

 X

 X

 X

 X

User-written functions:

Command lists

User-written

 programming

 (PL/I, C)

User-written

 programming

 (assembler)

NetView Pipelines

 X

 X

 X

 X

 X

Legend:

CGD IBM Tivoli NetView for z/OS Customization Guide

GET IBM Tivoli NetView for z/OS Installation: Getting Started

OLH NetView online help

CLS IBM Tivoli NetView for z/OS Programming: REXX and the NetView Command List Language

PLC IBM Tivoli NetView for z/OS Programming: PL/I and C

ASL IBM Tivoli NetView for z/OS Programming: Assembler

AUT IBM Tivoli NetView for z/OS Automation Guide

PIP IBM Tivoli NetView for z/OS Programming: Pipes

ASR IBM Tivoli NetView for z/OS Administration Reference

NUG IBM Tivoli NetView for z/OS User’s Guide

ADV IBM Tivoli NetView for z/OS Installation: Configuring Additional Components

*

For information about customizing AON, refer to the IBM Tivoli NetView for

z/OS Automated Operations Network Customization Guide.

Customizing NetView

4 Customization Guide

Collecting Data

Typical sources for collecting data useful in customization procedures are:

v Installation exit interfaces provided in the NetView program

v System or NetView services that provide status, configuration, processing, or

authorization information

v Data files and network devices that are accessed using system or NetView

services

v Messages to operators indicating that important events are occurring in a system

or an application.

Installation Exits

Some NetView installation exits allow access to network management data.

Through these installation exits and user-written functions you can obtain the text

of operator commands, messages, and logons. Data that the NetView program

writes to VSAM files and to the SMF log, as well as data on the VTAM®

communication network management (CNM) interface, can be accessed within

other NetView installation exits.

Reference: For more information about NetView installation exits, refer to the IBM

Tivoli NetView for z/OS Automation Guide, IBM Tivoli NetView for

z/OS Programming: Assembler, and IBM Tivoli NetView for

z/OS Programming: PL/I and C.

Service Routines

System or NetView services give you access to information such as:

v System date and time

v Addresses of programs

v Addresses of named storage areas

v Valid NetView operators

v Operator span of control

v Values of command list variables

Reference: Refer to the IBM Tivoli NetView for z/OS Programming: Assembler for

information about macros such as DSIDATIM, DSICES, DSIFIND,

DSIQOS, DSIQRS, and DSIKVS. Refer to the IBM Tivoli NetView for

z/OS Programming: PL/I and C for information on service routines such

as CNMINFC, CNMNAMS, CNMSCOP, and CNMVARS.

Data Files

The NetView program provides specialized disk services and VSAM data services

to access network management data files. In addition to these, functions written in

a high-level language (HLL), such as PL/I and C, can invoke system allocation and

access methods to read from NetView partitioned data sets and request VSAM

I/O. CNM interface services also provide access to data coming from devices in

the network.

Using the NetView PIPE command, you can read data files using the QSAM and <

(From Disk) stages. Through the pipe facility, you also have access to VSAM data

using DSIVSAM and DSIVSMX. Refer to the IBM Tivoli NetView for

z/OS Programming: Pipes for information about DSIVSAM and DSIVSMX.

REXX command lists can make use of the EXECIO command to read from and

write to sequential data sets or partitioned data set members.

Customizing NetView

Chapter 1. Designing Functions 5

Reference: Refer to the IBM Tivoli NetView for z/OS Programming: PL/I and C for

information about VSAM and CNM interface services.

For more information about pipes, refer to the IBM Tivoli NetView for

z/OS Programming: Pipes.

Refer to the IBM Tivoli NetView for z/OS Programming: REXX and the NetView

Command List Language for information on REXX file input and output. Refer to the

IBM Tivoli NetView for z/OS Programming: Assembler for information on using

DSIDKS for read access to NetView data sets or files, DSIZVSMS for VSAM I/O,

and DSIZCSMS for CNM data services.

Operator Commands and Messages

You can issue operator commands within command procedures to request status

data. The resulting response messages containing the requested status data can be

trapped and processed in the command procedure. You can also process data in

other system and network messages in user-written command procedures that are

invoked through NetView automation.

Reference: Refer to the IBM Tivoli NetView for z/OS Programming: REXX and the

NetView Command List Language for information on REXX and NetView

command list language message processing. Refer to the IBM Tivoli

NetView for z/OS Programming: PL/I and C for information on PL/I and

C message processing. For more information on writing automation

options, refer to the IBM Tivoli NetView for z/OS Automation Guide.

Data Storage and Recording

You can use NetView command procedures to store and retrieve data needed for

many user-written functions. Command procedures written in REXX, NetView

command list language, PL/I, or C can create, set, and read global and task

variables.

For permanent storage and for larger volumes of data, you can record certain

information in data files rather than naming it and storing it as a command list

variable. The NetView program allows you to record this data in a log. For

example, you can log activities of your applications along with system or network

activities that the NetView program is logging. You might want to produce a

separate log of data that you collect.

Reference: Refer to the IBM Tivoli NetView for z/OS Installation: Configuring

Additional Components and “Choosing a Language” on page 12 in this

book for information on sequential logging.

Operator Presentation

You can customize or extend some of NetView’s operator presentation functions

with the VIEW command or by modifying panels that some components of

NetView use to present data to operators. See Chapter 3, “Using the VIEW

Command,” on page 31 and Chapter 4, “Modifying and Creating Online Help

Information,” on page 65 for more information.

You can also use messages to present information to operators. With messages, the

data from user-written functions becomes subject to NetView automation

processing, allowing both automatic and manual operation of your functions.

Customizing NetView

6 Customization Guide

Reference: Refer to the IBM Tivoli NetView for z/OS Programming: Assembler for

information about DSIWCS, DSIMBS, DSIMQS, DSIPSS, and other

message services. Refer to the IBM Tivoli NetView for z/OS Programming:

PL/I and C for information about using CNMSMSG. Refer to the IBM

Tivoli NetView for z/OS Programming: REXX and the NetView Command

List Language for descriptions of REXX and NetView command list

language write-to-operator (WTO) messages and other message

services.

You can also customize the NetView command facility panel. See Chapter 2,

“Customizing the NetView Command Facility Panel,” on page 27 for more

information.

Tasks

To write functional extensions to the NetView program, keep in mind that the

NetView design is based on z/OS.

Reference: The z/OS library is a good reference for explanations of how words

such as dispatch, task, and the names of various system services are

used in this section.

NetView Program as a System Application Program

The NetView program is organized into several parallel tasks, each one capable of

being dispatched separately in a multitasking environment. When any one task is

idle, any of the others is eligible to run. A system multitasking dispatcher uses the

NetView program’s ATTACH system service to create each new task. When a task

has no more processing to do and is ready to become idle, the task calls the WAIT

system service. The POST system service takes a task out of an idle state, and

allows it to be dispatched when new input data is ready to be processed for that

task.

NetView Program Tasks

When the NetView program starts, its main task attaches several subtasks of

different types, depending on the function to be performed. Each different task

type determines the specific system interfaces and operator interfaces that are

available under that task, and the type of transactions you can perform.

Each operator station task (OST) supports one NetView operator identified by a

unique name. The operator identifiers (OPIDs) are defined in the NetView

parameter library. OPIDs are assigned to an OST when an automated operator,

known as an autotask, is activated using the AUTOTASK command, or when an

operator logs on using a VTAM-connected terminal.

Each NetView-NetView task (NNT) also supports an operator. This type of task is

used when the operator logs on to the NetView program from another NetView

program rather than from a terminal. The other NetView program can be running

in a different machine but must be connected through VTAM. The operator logs on

from the other NetView program using the START DOMAIN command.

Each hardcopy task (HCT) supports a 3287 printer connected through VTAM to

provide a hardcopy log for operators. See Figure 5 on page 8 for a structural

overview of the command facility and its task structure.

Customizing NetView

Chapter 1. Designing Functions 7

There is only one primary program operator interface task (PPT) for each NetView

program. When VTAM is running, the PPT opens a special VTAM application

control block (ACB) for the VTAM programmable operator interface (POI) to

receive unsolicited data from VTAM.

Each optional task (OPT) must be defined by a TASK statement in the NetView

parameter library. The program module that runs for an OPT can be any program

that meets the specification for optional tasks described in “Adding Optional Tasks

to the NetView Program” on page 12.

Each data services task (DST) is a specific case of an optional task. See “Adding

Optional Tasks to the NetView Program” on page 12. The TASK statement for a

DST can name an initialization member in the NetView parameter library from

which statements are read to define parameters for the functions performed by the

specified DST.

Program Activity within a Task

After being activated, each type of NetView task waits for a request to perform a

specific unit of work. When that unit of work is complete, the task enters a normal

wait state. The task runs again when another request to perform a unit of work is

received. Each task uses a list of event control blocks (ECBs) when it issues its

WAIT. The NetView customization macros and services are provided to ensure that

Main
Task
(MNT)

Operator
Station
Task
(OST)

Data
Services
Task
(DST)

NetView -
NetView
Task
(NNT)

Primary
POI
Task
(PPT)

Hard-Copy
Task
(HCT)

Unattended
Operator
Station
Task

Operator
Station

Hard-
Copy
Device

OST in
Another
Domain

Note: NetView can also run when VTAM is not active.

Console
Operator
Task

System
Consoles

DST

VTAM

VSAM

Figure 5. Structural Overview of the Command Facility

Customizing NetView

8 Customization Guide

any implied waiting is done through the ECB list of the task so that all of the

task-request interfaces within the NetView program remain enabled.

Every NetView task has its own termination ECB and its own message queue ECB.

Some types of tasks (for example, OSTs or DSTs) can have additional ECBs in their

ECB lists. The additional ECBs represent processing that the task tests for and

performs when it is posted out of its WAIT state.

Queuing Work to NetView Program Tasks

While a task is in its normal WAIT state, another task in the NetView program can

run. A NetView task that is running can be interrupted at any time by an event in

the system, and can be preempted by a higher-priority task until that task issues

its normal WAIT. System functions outside of the NetView program can also

interrupt the NetView processing by running scheduled interrupt exit routines that

are associated with specific NetView tasks.

Data for a task can be placed in its message queue or another work queue, and the

task can be posted to perform that work at any time. The data can originate in

another NetView task. This can happen when a DST queues message data to an

OST to be displayed to an operator. The data can come into the NetView program

through an interrupt exit routine that is scheduled by an event such as the

completion of a VTAM RECEIVE request.

Message and Command Buffers

The data placed in the various task queues is formatted into a special data

structure called a message buffer or a command buffer. A header at the beginning

of the buffer indicates the type of data the buffer contains and any special formats

by which the data must be accessed. Commands are processed by programs called

command processors that you provide in your customization programming for the

NetView program. Messages are processed either according to predefinitions built

into the NetView task, or by NetView automation command processors. Message

buffers are also available for automation at various points in NetView processing

through installation exits.

Immediate Commands

An immediate command starts processing as soon as an operator enters the

command. The requested function is performed immediately, even if the task is in

the middle of a large queue of work.

An immediate command runs under the OST and NNT subtask environments.

Unlike other commands, immediate commands can receive control with the

TVBINXIT bit set on. Immediate commands interrupt mainline processing and

cannot be interrupted by another command. Immediate commands can be

interrupted by other exits in asynchronous activity.

Long-Running Commands

A long-running command is a command that can suspend processing to allow

other activity, such as operator commands and data retrieval, and then resume

processing. All the NetView components are long-running commands. NetView

command list language, REXX, PL/I, and C command procedures are also

long-running commands. The DSIPUSH macro allows an assembler command to

run as a long-running command.

Customizing NetView

Chapter 1. Designing Functions 9

Long-running commands run under an OST, NNT, PPT, or DST (logoff routines

only). Long-running commands can be:

v Invoked directly by operator input

v Called by a command list

v Called by another long-running command.

Long-running commands return control to the NetView program after scheduling

work but before processing is complete. The NetView program then processes

other work that is pending.

You can use long-running command processors to retrieve data from another task

or from another domain without allowing the calling function or calling command

list to proceed during the retrieval. When the retrieval is executing, the processor’s

task can continue to receive messages and accept commands.

Data Services Commands

A data services command processor (DSCP) runs under the DST subtask

environment. DSCPs perform CNM data services and VSAM data services. DSCPs

can also be called for centralized or serialized user-defined functions that do not

use CNM interface or VSAM services.

Defining User-Written Programs on the Host: Exits and Commands

You can provide two types of user-written programs within the NetView task

environments:

v Installation exits

v Command processors.

Reference: The programming interface details are provided in IBM Tivoli NetView

for z/OS Programming: PL/I and C and IBM Tivoli NetView for

z/OS Programming: Assembler. In designing user-written functions, you

can use the installation exit interface and the command processor

interface in the NetView program to fit your own programming into

the overall structure of the NetView program.

Installation Exit Programs

Installation exits are provided in NetView at several points in the processing of

logon and logoff data, command buffers, and message buffers. Different exits are

driven based on the origin of the buffer and the stage of the NetView processing

that the exit is in. Special exits are driven under DSTs to handle a task’s data

during initialization, input, and output.

Reference: For a summary of the NetView installation exits, refer to the IBM Tivoli

NetView for z/OS Automation Guide, IBM Tivoli NetView for

z/OS Programming: Assembler, and IBM Tivoli NetView for

z/OS Programming: PL/I and C.

General installation exits are identified and invoked with preassigned module

names of DSIEXnn, and the DST exits are uniquely identified in the task DSTINIT

initialization statements.

DSIEX21 is used to access the DSITCPRF member. For more information, refer to

the IBM Tivoli NetView for z/OS Security Reference.

Customizing NetView

10 Customization Guide

Command Processors and Command Lists

NetView command processors and command lists can be started by:

v An operator request

v A command buffer queued to a task for processing by any NetView program

v A command call from another command processor

v An action specified in the NetView automation table

Reference: To define command lists written in the NetView command list

language or REXX to the NetView program, place them in the NetView

command list library (ddname DSICLD). Refer to the IBM Tivoli NetView

for z/OS Programming: REXX and the NetView Command List Language to

find out how to create command lists for specific operating systems.

You must link-edit PL/I, C, and assembler command processors into the NetView

load library (ddname STEPLIB), and define them to NetView. To define command

processors written in PL/I, C, or assembler to NetView, use a CMDDEF statement

in the CNMCMD member of DSIPARM. Command processors are link-edited into

the NetView load library.

You can implement parts of a function in multiple installation exit programs and

command processors. A common way of splitting a function across command

processors is to divide processing between OSTs and DSTs. Because OSTs receive

data from operator stations and return data back to them, a command processor is

written to:

v Be called when the command is entered by an operator

v Parse the command data and form a data services request

v Queue a command buffer containing the data services command to be processed

by the DST

v Return an error message or a command confirmation message to the operator

The DST completes the function in a separate command processor that is called

because of the command buffer that is built and queued by the first command

processor. Under the DST, functions requiring the special data services of VSAM,

external logging, or the VTAM CNM interface are performed and messages can be

returned to the operator task that queued the command. Figure 6 on page 11

shows a typical program design for a function that uses the CNM interface and

VSAM services.

 With long running commands, you can separate a complex function into a

sequence of separate transactions. Command processors can establish a named

DASD

OST DST

Command
Processor

Command
Processor

Operator
Terminal

CNM
Interface

Network
Device

Output
Message

Data Services
Command

Message with
Data

VSAM

Command
Entered

Figure 6. Program Design Example for DST Function

Customizing NetView

Chapter 1. Designing Functions 11

stack entry where an anchor address is saved. A related command processor can

later retrieve this address and perform another phase of the same processing.

When naming your commands, observe the following guidelines:

v Start with a letter (alphabetic)

v Avoid special characters such as commas and colons

v Avoid NetView command names, both internal commands and those shipped in

CNMCMD. NetView internal command names are CSCFDST, HMSTATS,

LOGNMVT, LOGRU, MESSAGE, PIPE, and VIEW.

v Avoid the following NetView prefixes:

 AAU

BNH

BNI

BNJ

BNK

BNT

CNM

DSI

DUI

DWO

EGV

EKG

EUY

EXQ

EYV

EZL

FKB

FKV

FKW

FKX

FLB

FLC

FMG

FNA

IHS

Adding Optional Tasks to the NetView Program

You can write a completely new subtask in assembler language that the NetView

program starts as an optional task (OPT) or subtask.

For an OPT, you must supply code for the subtask’s initialization, installation exit,

message, and command processing functions and termination. Because some of

these elements are already provided in an existing DST, using the DST as a starting

point is more practical.

Reference: For more information on OPTs and DSTs in assembler language, refer

to the IBM Tivoli NetView for z/OS Programming: Assembler.

Choosing a Language

One application program interface might be more suitable than another for your

particular customization requirements. Consider the effects on performance, ease of

creation, and maintenance when determining the interface to use. This section

describes the languages available and lists reasons that you might choose one

language over another.

Input and Output

REXX, PL/I, C, and assembler all offer functions for reading from and writing to

direct access storage devices (DASD). The NetView program provides specialized

disk services and VSAM data services to access network management data files. In

addition, functions written in PL/I or C can invoke system allocation and access

methods to read and write data. CNM interface services also provide access to data

coming from devices in the network.

Reference: Refer to the IBM Tivoli NetView for z/OS Programming: PL/I and C for

information about VSAM and CNM interface services. Refer to the IBM

Tivoli NetView for z/OS Programming: Assembler for information about

using DSIDKS for read access to NetView data sets or files, DSIZVSMS

for VSAM I/O, and DSIZCSMS for CNM data services.

Refer to the IBM Tivoli NetView for z/OS Programming: REXX and the NetView

Command List Language for information on REXX file input and output.

Customizing NetView

12 Customization Guide

Performance

Write performance-critical applications in a compiled or assembled language.

Generally, compiled or assembled command procedures execute faster than

interpretive (REXX and NetView command list language) command lists.

You must write NetView-driven installation exit routines in assembler, PL/I, or C.

Any command processor that accesses NetView control blocks must be written in

assembler. Command procedures that can be driven by terminal input or by

messages and that do not need to access NetView control blocks can usually be

written in REXX or in NetView command list language. Generally, command lists

written in REXX perform somewhat better than those written in NetView

command list language. See “REXX Versus the NetView Command List Language.”

Additionally, the performance of REXX command lists can be improved by

compiling the REXX command list.

Preloading a REXX or NetView command list (refer to the NetView online help for

the LOADCL command) improves overall performance of the command list.

Reference: For details about compiling REXX command lists, refer to the IBM

Tivoli NetView for z/OS Tuning Guide.

For additional performance recommendations, refer to the IBM Tivoli NetView for

z/OS Installation: Configuring Additional Components and IBM Tivoli NetView for

z/OS Installation: Configuring Additional Components.

Stability

If you anticipate changes to your procedures as you gain more experience or as

your operating environment changes, you might want to use command lists to

implement the procedures initially. Changes are easier to make in command lists

because you can incorporate the changes and test them online without having to

restart the NetView program. You can translate procedures into a compiled

language when you become confident of their stability.

Testing

Testing capabilities for command lists include the ability to trace execution using

either operator commands or command list statements. A remote interactive

debugger (RID) that displays information to a NetView operator console can help

you in debugging PL/I and C user-written command processors and installation

exits. The NetView program does not provide any specific functions to help debug

assembler programs.

Speed of Implementation

Because command lists are easy to write, test, and put into production, they can be

an appropriate choice in addressing immediate operational needs.

REXX Versus the NetView Command List Language

If all of your systems can run REXX, choose REXX over the NetView command list

language for writing command lists. REXX is a structured language that enables

you to use subroutines. REXX is the easier language to learn and provides

additional functions, such as mathematical capabilities and improved string

handling. REXX can read from and write to data sets with EXECIO. In addition,

the performance of REXX command lists can be improved by compiling the REXX

command list.

Customizing NetView

Chapter 1. Designing Functions 13

REXX language skills can be used in environments other than the NetView

program. However, REXX procedures written for the NetView program probably

will not be transportable to other environments because of their function content.

In multiple environments, REXX is more useful because you can transfer REXX

programming skills to solve NetView problems without learning another language.

If your installation uses several operating systems, it is possible that some of them

support REXX and others do not. In this case, you can create bilingual command

lists that contain both REXX and NetView command list versions of your

instructions. The command lists run in REXX if REXX is available; otherwise, they

process in the NetView command list language.

Reference: For details about compiling REXX command lists, refer to the IBM

Tivoli NetView for z/OS Programming: REXX and the NetView Command

List Language.

Refer to the IBM Tivoli NetView for z/OS Programming: REXX and the NetView

Command List Language for more information about bilingual command lists.

Language Choices by Function

Table 4 lists additional capabilities to consider when choosing which language to

use.

 Table 4. Language Choices by Function

Function

REXX or

NetView

CLIST PL/I or C Assembler

Send message to NetView operator in line

mode.

Yes Yes Yes

Interact with operator through NetView

operator’s screen (PAUSE/GO command).

Yes Yes No

Invoke NetView commands. Yes Yes Difficult

Trap and process messages destined for an

operator.

Yes Yes Difficult

Access task and common global variables. Yes Yes Yes

Create and access named areas of storage. Yes REXX; No

CLIST

Yes Yes

Interact with operator through full-screen

panels.

With VIEW

command

With VIEW

command

Difficult

Communicate non-SPCI data over the

CNM interface.

No Yes Yes

Access DASD or VSAM files.

Note: The PIPE command provides the

ability to read from disk. DSIVSAM and

DSIVSMX provide access to VSAM files.

Yes Yes Yes

Program debugging support provided. Yes Yes No

Implement NetView installation exits. No Most Yes

Access NetView control blocks. No No Yes

Reference: Refer to the your specific programming language guides for

considerations on writing in mixed languages.

Customizing NetView

14 Customization Guide

Logging

The NetView program provides several ways to log information. Table 5 lists the

available features of the common logging methods.

 Table 5. Features of NetView Logging Methods

Feature Network Log

External SMF

Log

External

User-Defined

Log

NetView

Sequential Log

Access method VSAM VSAM Sequential BSAM

Device-
independent

No No Yes Yes

Function

provided

Record all

operator station

activity

Service level

verification and

accounting

User-defined Base service for

user-defined

functions

API–PL/I and C

*

CNMSMSG CNMSMSG CNMSMSG CNMSMSG

API–assembler DSIWLS DSIWLS DSIWLS DSIWLS

Begin recording START Refer to IBM

Tivoli NetView for

z/OS Installation:

Configuring

Additional

Components.

Refer to IBM

Tivoli NetView for

z/OS Installation:

Configuring

Additional

Components.

Refer to IBM

Tivoli NetView for

z/OS Installation:

Configuring

Additional

Components.

Browse NetView

BROWSE

No Operating

system browse

Operating

system browse

Multiple log

tasks

No No No Yes

Variable length

blocks and

records

No Yes Yes Yes

Primary /

secondary data

sets or files

Yes System

controlled

No Yes

SWITCH,

RESUME,

AUTOFLIP

Yes N/A No Yes

Installation exits Many XITXL XITXL XITBN, XITBO

Reference: For information about the network log, refer to the IBM Tivoli NetView

for z/OS Automation Guide. For information about external logging

using the system management facility (SMF), a user-defined log, or

sequential logging, refer to the IBM Tivoli NetView for z/OS Installation:

Configuring Additional Components.

Cross-Reference for Message and Environment Functions

Table 6 on page 16, Table 7 on page 17, and Table 8 on page 18 provide a

cross-reference for the NetView system data, task data, and message functions.

With these matrixes, you can determine whether the function you are interested in

is available to the automation table, REXX, NetView command list language, or

assembler. You can also determine what the name of the function is. Each matrix is

alphabetized by the name of the REXX function.

Customizing NetView

Chapter 1. Designing Functions 15

Notes:

1. If you are writing assembler-language command processors, refer to the IBM

Tivoli NetView for z/OS Programming: Assembler for the BUFHDR mapping

within the DSITIB mapping macro, the DSIIFR mapping macro, and the

DSIAIFRO mapping macro for exact field definitions.

2. If you are writing command lists, refer to the IBM Tivoli NetView for

z/OS Programming: REXX and the NetView Command List Language for more

information about NetView command list language control variables and REXX

functions.

3. If you are writing in PL/I or C language, refer to the IBM Tivoli NetView for

z/OS Programming: PL/I and C for more information about the CNMINFC,

CNMINFI, and CNMGETA service routines.

4. If you are writing automation table statements, refer to the IBM Tivoli NetView

for z/OS Automation Guide for a description of the automation table condition

items.

 Table 6. Automation Variable Cross-Reference Table for System Data. The data returned is about the system. The

same data is returned in every message for every task.

REXX

Function Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

ASID() NetView address space

identifier

Not available CNMINFI ASID &ASID ASCBASID

CURSYS() Current z/OS system

name

CURSYS CNMINFC CURSYS &CURSYS CVTSNAME

(MVS)

Date(USA) Current date Not available CNMINFC DATE &DATE

DOMAIN() Current domain name DOMAIN CNMINFC DOMAIN &DOMAIN MVTCURAN

ECVTPSEQ() Product sequence

number

ECVTPSEQ CNMINFC ECVTPSEQ &ECVTPSEQ IHAECVT

(MVS)

MVSLEVEL() Current z/OS system

level

MVSLEVEL CNMINFC

MVSLEVEL

&MVSLEVEL CVTPRODN

(MVS)

NETID() VTAM network

identifier

NETID CNMINFC NETID &NETID ACB vectors

NETVIEW() NetView version and

release identifier

NETVIEW CNMINFC NVVER &NETVIEW MVTVER

OPSYSTEM() Operating system

NetView was compiled

for

OPSYSTEM CNMINFC OPSYSTEM &OPSYSTEM DSISYS

Compiler

variable

STCKGMT()

8-byte value

Greenwich Mean Time

Store Clock Value

Not available CNMINFC CLOCK

8-byte value

&STCKGMT

8-byte value

SUPPCHAR() In NetView, the

character that

suppresses the

command echo or the

command’s message

output

Not available CNMINFC

SUPPCHAR

&SUPPCHAR MVTSPCHR

Customizing NetView

16 Customization Guide

Table 6. Automation Variable Cross-Reference Table for System Data (continued). The data returned is about the

system. The same data is returned in every message for every task.

REXX

Function Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

SYSPLEX() 1–8 character name of

the z/OS SYSPLEX

where the command

list is running

SYSPLEX CNMINFC SYSPLEX &SYSPLEX ECVTSPLX

TIME(option) Current time Not available CNMINFC TIME &TIME

VTAM() VTAM level if active VTAM CNMINFC VTAM &VTAM ACB vectors

MVTACB

ACBOPEN

VTCOMPID() VTAM component

identifier

VTCOMPID CNMINFC

VTCOMPID

&VTCOMPID ACB vectors

MVTACB

ACBOPEN

WEEKDAYN() Decimal number

representing day of

week

WEEKDAYN CNMINFI

WEEKDAYN

&WEEKDAYN

 Table 7. Automation Variable Cross-Reference Table for Task Data. The data is local to the task. The information is

different for each task, but each message on that task has the same information.

REXX

Functions

and

variables Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

NetView program

termination indicator

NVCLOSE CNMINFI CLOSING Not available MVTCLOSE

APPLID() Application name of

the current task

Not available CNMINFC APPLID &APPLID TVBAPID

ARG() Input parameters for

the active command

list

Not available Not available &PARMSTR

ATTENDED() Task information ATTENDED CNMINFI ATTENDED &ATTENDED TVBSYSCN

TVBAUTOO

TVBDAUT

AUTCONID() MVS console name

that is associated with

an autotask. This MVS

console can issue

NetView commands to

run under this

autotask.

Not available CNMINFC

AUTCONID

&AUTCONID TVBSYSCN

TVBCNAME

AUTOTASK() Autotask indicator AUTOTASK CNMINFI AUTOTASK &AUTOTASK TVBAUTOO

COMPNAME() Component name that

was active when

command list invoked

Not available Not available &COMPNAME

Customizing NetView

Chapter 1. Designing Functions 17

|
|
|
|

Table 7. Automation Variable Cross-Reference Table for Task Data (continued). The data is local to the task. The

information is different for each task, but each message on that task has the same information.

REXX

Functions

and

variables Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

CURCONID() MVS console name

used by a NetView

task to issue MVS

commands and receive

MVS messages

Not available CNMINFC

CURCONID

&CURCONID TVBMCSNU

TVBMCSNA

DISTAUTO() Distributed autotask

indicator

DISTAUTO CNMINFI DISTAUTO &DISTAUTO TVBDAUT

HCOPY() Hardcopy task for this

task

Not available CNMINFC HCOPY &HCOPY TVBHCTVB ->

TVBOPID

LU() Terminal name of the

currently running task

Not available CNMINFC LU &LU TVBLUNAM

NVCNT() Number of domains

available

Not available Not available &NCCFCNT

NVID(n) Domain ID array Not available Not available &NCCFID

number

NVSTAT(name) Domain status Not available Not available &NCCFSTAT

name

OPID() ID of currently

running task

OPID CNMINFC OPID, or

CNMINFC

TASKNAME

&OPID TVBOPID

PARMCNT() Number of input

parameters to the

active command list

Not available Not available &PARMCNT

RC Return code Not available Not available &RETCODE Register 15

TASK() Type of task TASK CNMINFC TASK &TASK CBHTYPE in

DSITVB

WTO.REPLY WTOR reply text Not available Not available &WTOREPLY

 Table 8. Automation Variable Cross-Reference Table for Message Data. Data is different for each message or MSU.

The message ID is message data.

REXX

Functions

and

variables Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

1–1100 byte source

object

Not available CNMGETA

MSGSRCOB

Not available MSODATA

MSOLEN

ACTIONDL() Message deletion

reason

ACTIONDL CNMCAGA

ACTIONDL

&ACTIONDL IFRAUDLO

IFRAUDTO

IFRAUNVD

IFRAUDFL

IFRAUDF2

Customizing NetView

18 Customization Guide

|
|
|
|

|

|
|
|
|

Table 8. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each

message or MSU. The message ID is message data.

REXX

Functions

and

variables Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

ACTIONMG() Action message ACTIONMG CNMCAGA

ACTIONMG

&ACTIONMG IFRAUACN

AREAID() MVS area ID AREAID CNMGETA AREAID &AREAID IFRAUWMA

CPOCAREA

MDBCAREA

AUTOTOKE() MPF automation token

1–8 characters, or null

AUTOTOKE CNMGETA

AUTOTOKE

&AUTOTOKE IFRAUTOK

CPOCAUTO

MDBCAUTO

CART() 8-byte command and

response token

CART CNMGETA CART &CART CPOCCART

MDBCCART

DESC() 2 bytes of MVS

descriptor codes

DESC CNMGETA DESC &DESC IFRAUWDS

CPOCDESC

MDBCDESC

GETMLINE

command

Message text TEXT CNMGETD GETFIRST

or CNMGETD

GETNEXT

GETMLINE

command

GETMPRES

command

4 bytes of presentation

attributes

This information is

contained in the text

buffers chained from

IFRAUTBA.

LINEPRES

LINEPRES

only returns

presentation

characteristics

for the first

line of the

message

Not available GETMPRES

command

HDRTMTPA

MDBTMTPA

GETMSIZE

command

2-byte count of

number of lines of

message

The value in

CPOCLCNT might not

reflect the actual

number of buffers in

the message. Therefore,

assembler command

processors should

count the number of

buffers on the

IFRAUTBA chain.

Not available Not available GETMSIZE

command

CPOCLCNT

MDBCLCNT

Customizing NetView

Chapter 1. Designing Functions 19

|
|
|
|

Table 8. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each

message or MSU. The message ID is message data.

REXX

Functions

and

variables Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

GETMTFLG

command

2 bytes of text object

flags

This information is

contained in the text

buffers chained from

IFRAUTBA.

LINETFLG

LINETFLG

only returns

object type

flags for the

first line of the

message

Not available GETMTFLG

command

HDRTLNTY

MDBTLNTY

HDRMTYPE() NetView message type HDRMTYPE ORIG_MSG_TYPE

ORIG_MSG_TYPE

contains the message

type only after

CNMGETD has been

issued.

&HDRMTYPE HDRMTYPE

IFRAUGMT() 8-byte hexadecimal

Store Clock value

when AIFR was

created

None CNMGETA

IFRAUGMT

&IFRAUGMT IFRAUGMT

IFRAUIND() 2 bytes of automation

IFR indicator flags

IFRAUIND(nn) CNMGETA IFRAUIND &IFRAUIND IFRAUIND

IFRAUIN3() 1 byte of indicator bits IFRAUIN3(nn) CNMGETA IFRAUIN3 &IFRAUIN3 IFRAUIN3

IFRAUI3X() 32-bit field of which

IFRAUIN3 are the first

8 bits

IFRAUI3X CNMCAGA IFRAUI3X &IFRAUI3X IFRAUI3X

IFRAUNVF MVS Retain Flags MVSRTAIN CNMGETA

MVSRTAIN

&MVSRTAIN IFRAUNVF

IFRAUSDR() Original sender of a

message or MSU,

whereas HDRSENDR

is unreliable

IFRAUSDR CNMGETA IFRAUSDR &IFRAUSDR IFRAUSDR

IFRAUSRB()

IFRAUSB2()

2-byte user field from

the AIFR. This user

field can be referenced

either as bits or

characters.

IFRAUSRB(nn),

IFRAUSB2(n)

CNMGETA

IFRAUSRB,

CNMGETA IFRAUSB2

&IFRAUSRB

&IFRAUSB2

IFRAUSRB

IFRAUSRC()

IFRAUSC2()

16-byte user field from

the AIFR. This user

field can be referenced

either as bits or

characters.

IFRAUSRC,

IFRAUSC2

CNMGETA

IFRAUSRC,

CNMGETA IFRAUSC2

&IFRAUSRC,

&IFRAUSC2

IFRAUSRC

IFRAUTA1() 6 bytes of control flags IFRAUTA1(nn) CNMGETA IFRAUTA1 &IFRAUTA1 IFRAUTA1

IFRAUWF1() 4 bytes of MVS specific

WQE flags

IFRAUWF1(nn) CNMGETA

IFRAUWF1

&IFRAUWF1 IFRAUWF1

Customizing NetView

20 Customization Guide

|
|
|
|

Table 8. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each

message or MSU. The message ID is message data.

REXX

Functions

and

variables Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

JOBNAME() 8-byte MVS job name JOBNAME CNMGETA JOBNAME &JOBNAME IFRAUWJA

GOJGJBNM

MDBGJBNM

JOBNUM() 8-byte MVS job

number

JOBNUM CNMGETA JOBNUM &JOBNUM IFRAUWJU

CPOCOJID

MDBCOJID

KEY() 8-byte key associated

with a message

KEY CNMGETA KEY &KEY CPOCKEY

MDBCKEY

LINETYPE()

GETMTYPE

command

Message MLWTO

indicators

Not available ORIG_LINE_TYPE

ORIG_LINE_TYPE

contains the line type

only after CNMGETD

has been issued.

&LINETYPE

GETMTYPE

command

HDRLNTYP

IFRAUWF1(3)

HDRTTYPE

MDBTTYPE

MCSFLAG() 2 bytes of MVS MCS

flags

In command lists,

PL/I, and C,

MCSFLAG returns a

selection of eight

MCSFLAG bits. In the

automation table,

MCSFLAG returns 16

bits that match the

assembler control block

field.

MCSFLAG CNMGETA MCSFLAG &MCSFLAG IFRAUMCS

MSGASID() z/OS system address

space identifier

Not available CNMGETA MSGASID &MSGASID IFRAUASI

IFRAUWAS

CPOCASID

MDBCASID

MSGAUTH() Indicates whether an

MVS system message

was issued by an

authorized program

MSGAUTH CNMGETA

MSGAUTH

&MSGAUTH CPOCAUTH

MDBCAUTH

MSGCATTR() 2 bytes of MVS

message attributes

flags

MSGCATTR CNMGETA

MSGCATTR

&MSGCATTR CPOCATTR

MDBCATTR

MSGCMISC() 1 byte of MVS

miscellaneous routing

information flags

MSGCMISC CNMGETA

MSGCMISC

&MSGCMISC CPOCMISC

MDBCMISC

MSGCMLVL() 2 bytes of MVS

message-level flags

MSGCMLVL CNMGETA

MSGCMLVL

&MSGCMLVL CPOCMLVL

MDBCAUTH

MSGCMSGT() 2 bytes of message

type flags

MSGCMSGT CNMGETA

MSGCMSGT

&MSGCMSGT CPOCMSGT

MDBCMSGT

MSGCNT() Number of tokens in a

message

Not available Not available &MSGCNT

Customizing NetView

Chapter 1. Designing Functions 21

|
|
|
|

Table 8. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each

message or MSU. The message ID is message data.

REXX

Functions

and

variables Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

MSGCOJBN() 8-character originating

job name

MSGCOJBN CNMGETA

MSGCOJBN

&MSGCOJBN CPOCOJBN

MDBCOJBN

MSGCPROD() MVS system product

level of the system that

issued the message

MSGCPROD CNMGETA

MSGCPROD

&MSGCPROD CPOCPROD

MDBCPROD

MSGCSPLX() 1–8 character name of

MVS SYSPLEX where

the received message

originated

MSGCSPLX CNMGETA

MSGCSPLX

&MSGCSPLX CPOCSPLX

MSGCSYID() Decimal system ID (for

DOM)

Not available CNMGETA

MSGCSYID

&MSGCSYID CPOCSYID

MDBCSYID

MSGDOMFL() 1 byte of DOM flags MSGDOMFL CNMGETA

MSGDOMFL

&MSGDOMFL CPODOMFL

MDBDOMFL

MSGGBGPA() 4 bytes of background

presentation attributes

MSGGBGPA CNMGETA

MSGGBGPA

&MSGGBGPA GOJGBGPA

MDBGBGPA

MSGGDATE() 7-character date in the

form yyyyddd

MSGGDATE CNMGETA

MSGGDATE

&MSGGDATE GOJGDSTP

MDBGDSTP

MSGGFGPA() 4 bytes of foreground

presentation attributes

MSGGFGPA CNMGETA

MSGGFGPA

&MSGGFGPA GOJGFGPA

MDBGFGPA

MSGGMFLG() 2 bytes of MVS general

message flags

MSGGMFLG CNMGETA

MSGGMFLG

&MSGGMFLG GOJGMFLG

MDBGMFLG

MSGGMID() 4-byte MVS message

ID field

MSGGMID CNMGETA MSGGMID &MSGGMID GOJGMID

MDBGMID

MSGGSEQ() MVS message

sequence number. This

sequence number,

together with

MSGGSYID, determine

MSGGMID.

Not available CNMGETA MSGGSEQ &MSGGSEQ GOJGSEQ

MSGGSYID() System ID of the MVS

system from which the

message was issued

Not available CNMGETA

MSGGSYID

&MSGGSYID GOJGSYID

MDBGSYID

MSGGTIME() 11-byte time

hh.mm.ss.th character

string

MSGGTIME CNMGETA

MSGGTIME

&MSGGTIME GOJGTIMH

MDBGTIMH

GOJGTIMT

MDBGTIMT

MSGID() Message ID, which is

not always the first

item of a message. For

example, if the

message is a WTOR, a

REPLYID precedes the

message ID.

MSGID ORIG_PROCESS

ORIG_PROCESS

contains the message

ID only after

CNMGETD is issued.

&MSGID

Customizing NetView

22 Customization Guide

|
|
|
|

Table 8. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each

message or MSU. The message ID is message data.

REXX

Functions

and

variables Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

MSGORIGN() Message domain name

(or sometimes TAF

session name). This

always returns the

domain name in AIFR

buffers.

DOMAINID ORIG_DOMAIN

ORIG_DOMAIN

contains the domain

name only after

CNMGETD has been

issued.

&MSGORIGIN HDRDOMID

MSGSRCNM() 1–17 character source

name from the source

object

MSGSRCNM CNMGETA

MSGSRCNM

&MSGSRCNM MSOSUBDA

MSOSBNIK

MSOSBNID

MSOSBNAU

MSGSTR() Text of message after

the message ID

Not available CNMGETD GETFIRST

or CNMGETD

GETNEXT

&MSGSTR

MSGTOKEN() Numeric token

associated with

message

Not available CNMGETA

MSGTOKEN

&MSGTOKEN CPOCTOKN

MDBCTOKN

MSGTSTMP() Message time stamp Not available CNMGETA

MSGTSTMP

&MSGTSTMP HDRTSTMP

NVDELID() NetView DOM ID NVDELID CNMCAGA NVDELID &NVDELID IFRAUGMT

HDRDOMID

MSGVAR(n) Tokens of the message

In command lists, the

token after the

message ID is returned

as the first token. In

the automation table,

the message ID is

returned as the first

token.

TOKEN CNMGETD GETFIRST

or CNMGETD

GETNEXT

&1 - &31

PARTID() First two characters of

a VSE message prefix,

which, for some VSE

messages, indicates the

VSE partition ID

PARTID CNMGETA PARTID &PARTID

PRTY() 2-byte MVS message

priority

Not available CNMGETA PRTY &PRTY CPOCPRTY

MDBCPRTY

REPLYID() Reply ID Not available CNMGETA REPLYID &REPLYID CPOCRPYI

MDBCRPYI

CPOCRPYB

MDBCRPYB

ROUTCDE() 16 bytes of MVS

routing codes (128 bits)

ROUTCDE CNMGETA ROUTCDE &ROUTCDE IFRAUWRT

CPOCERC

MDBCERC

SESSID() TAF session name SESSID CNMGETA SESSID &SESSID IFRAUTAF

Customizing NetView

Chapter 1. Designing Functions 23

|
|
|
|

Table 8. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each

message or MSU. The message ID is message data.

REXX

Functions

and

variables Description

Automation

Table

Condition

Item

HLL

Service

Routine and

Options

NetView

Command

List

Language

Control

Variable

Control

Block

Field

SMSGID() MVS message ID for

DOM correlation

Not available CNMGETA SMSGID &SMSGID IFRAUWID

IFRAUWWI

SYSCONID() The MVS console

name that is associated

with the message

SYSCONID CNMGETA

SYSCONID

&SYSCONID IFRAUWUC

IFRAUCON

CPOCCNID

MDBCCNID

SYSID() 8-byte z/OS system

name that is associated

with the message

SYSID CNMGETA SYSID &SYSID IFRAUWSN

GOJGOSNM

MDBGOSNM

Customizing PF Keys and Immediate Message Line

You can set global variables that can be searched for and placed on the PF key line

on panels displayed by BROWSE, STATMON, and VIEW commands. On VIEW

panels, the immediate message line is also used as the PF key line. The variable

names are prefixed by (&)CNMIM and followed by the application name. Valid

variables include CNMIMLBROWSE, CNMIMMBROWSE, CNMIMSTATMON,

CNMIMVIEW, and CNMIMWINDOW.

For View panels, if the VIEW application has not provided a value for CNMIMDL,

VIEW searches the global dictionaries (task, then common) for a variable named

CNMIMxxx, where xxx is the application name provided when VIEW was

invoked. If the CNMIMxxx variable is not found, VIEW searches for CNMIMVIEW

in the same dictionaries. This is similar to the way keys are set for VIEW

applications. Finally, if none of these variables is present, the text from message

BNH257I is used.

Customizing NetView

24 Customization Guide

|
|
|
|

Modifying CNMKEYS

 The PFKDEF command list (CNME1010) can assign one or more task global

variables from the target file to match the key settings for applicable NetView

applications. Figure 7 shows how you can set the PF keys for the Browse, Status

Monitor, and View panels.

-------------------- DEFINE TEXT FOR KEY LINES -------------------

*

* The separator line above is required in any key definition file

* which defines "key line" texts. This separator line MUST begin

* with 9 dashes. All key definitions must precede this line, and

* all "key line" definitions must follow it.

*

* Optionally uncomment and modify the following statements, which

* assign values to the "key line" area of Statmon, Browse and View

* panels. The same rules are followed in this section as above with

* respect to commas and continuation lines. Keep the variable name

* between the delimiters, and PFKDEF will assign the rest of the line

* (including continuations) to that variable. Do not use leading

* blanks.

*

*/CNMIMSTATMON/1=HLP 2=END 3=RET 4=KYS 5=LOG 6=,

*ROL 7=BCK 8=FWD 9=SR 10=SV 11=SC 12=RTV

*/CNMIMLBROWSE/1=HLP 2=END 3=RET 4=KYS 5=RPF 6=,

*ROL 7=BCK 8=FWD 9=TOP 10=LFT 11=RGT 12=RTV

*/CNMIMMBROWSE/1=HLP 2=END 3=RET 4=KYS 5=RPF 6=,

*ROL 7=BCK 8=FWD 9=TOP 10=WIN 11=WHO 12=RTV

*/CNMIMVIEW/1=HLP 2=END 3=RET 4=KYS 5=LOG 6=,

*ROL 7=BCK 8=FWD 9=TOP 10=WIN 11=ENT 12=RTV

*/CNMIMWINDOW/1=HLP 2=RFR 3=RET 4=KYS 5=FIN 6=,

*ROL 7=BCK 8=FWD 9=TOP 10=LFT 11=RGT 12=RTV

Figure 7. Excerpt from CNMKEYS Sample to Set PF Keys

Customizing NetView

Chapter 1. Designing Functions 25

26 Customization Guide

Chapter 2. Customizing the NetView Command Facility Panel

The NetView command facility panel can be customized. You can customize:

v The colors of fields on the panel

v The information that precedes the message text

v The default colors for held, action, normal, and immediate classes of messages

v The color of the command area

v How much of the panel area is set aside for held and action messages

Using a Screen Format Definition

You can use a screen format (SCRNFMT) definition to specify attributes for the

command facility panel and a default value for the color of messages. To activate

the screen format definition, use the NetView DEFAULTS and OVERRIDE

commands. Refer to NetView online help for details on how to use DEFAULTS and

OVERRIDE. A short description of each option that can be specified in a screen

format definition is listed under “Screen Format Definition Statements.”

Reference: For detailed descriptions of the screen format definition statements,

refer to IBM Tivoli NetView for z/OS Administration Reference.

CNMSCNFT is a sample screen format definition, provided in IBM

Tivoli NetView for z/OS Installation: Configuring Additional Components.

Notes:

1. Color and highlighting must be supported by your hardware and emulator. In

addition, you must log on to NetView with a query-type logmode.

2. When you replace an active screen format definition with a new screen format

definition, all definition statements are replaced. Any definition statement not

specified in the new screen format definition will use the NetView-supplied

value. The NetView-supplied values for each definition statement are listed in

IBM Tivoli NetView for z/OS Administration Reference.

For example, a screen format definition has been activated with the DEFAULTS

command. Subsequently, operators activate customized screen format

definitions using the OVERRIDE command. The statements that were not

specified in an operator’s screen format definition use the NetView-supplied

value rather than the value from the screen format definition that was activated

with the DEFAULTS command.

Screen Format Definition Statements

The following screen shows the fields that you can customize on the NetView

message panel.

© Copyright IBM Corp. 1997, 2007 27

The following formats can be customized:

�1� Title area

Use the TITLE statement in a SCRNFMT definition to customize the color

of NETVIEW on the screen.

�2� Domain identifier

Use the TITLEDOMID statement in a SCRNFMT definition to customize

the color of the NetView domain name.

�3� Operator identifier

Use the TITLEOPID statement in a SCRNFMT definition to customize the

color of the operator name.

�4� Current date

Use the TITLEDATE statement in a SCRNFMT definition to customize the

color of the date. You can also customize the format of the date using the

DEFAULTS and OVERRIDE commands.

�5� Time data was last displayed

Use the TITLETIME statement in a SCRNFMT definition to customize the

color of the time. You can also customize the format of the time using the

DEFAULTS and OVERRIDE commands.

�6� and �7� System states

Use the TITLESTAT statement in a SCRNFMT definition to customize the

color of the status characters in the upper right corner of the panel.

�8� COLUMNHEAD line

Use the COLUMNHEAD statement in a SCRNFMT definition to create a

line at the top of the screen with labels for prefixes. This line can have up

to 16 tags (C1...C16) in any order. Total length of tags, including one space

between each tag, cannot exceed 78 characters. Set the tags using the

SCRNFMT definition. The PREFIX and NOPREFIX statements control

which tags appear. You can also choose not to have the line appear on the

screen.

�9� Output area

Use the HELD, ACTION, NORMAL, and NORMQMAX statements of the

SCRNFMT definition.

�1� �2 3 4 5 6 7�

+___+

|NCCF N E T V I E W NCF01 OPER1 04/29/96 11:57:30 A W|

�8�

|C1 ... C16 |

�9� |

�10�

|- NCF01 DSI020I OPERATOR OPER1 LOGGED ON FROM TERMINAL H11L42E USING |

�11� |

| PROFILE (PROFSEC), HCL () |

|- NCF01 DSI082I AUTOWRAP STOPPED |

|---|

| |

| |

 �12 13�

| ??? *** immediate messages appear here |

�14�

|list status=tasks |

+___+

Figure 8. NetView Message Panel

Customizing the NCCF Panel

28 Customization Guide

Note: HELD, ACTION and NORMAL statements set default colors for

messages. If message color has been previously set, the default

message color will not take effect. See “Message Color and

Highlighting” on page 30 for more information.

The NORMQMAX statement specifies how many normal messages are

queued for later display (excluding held and action messages). An example

of this is the number of messages kept while you are working in another

panel, or while the panel is locked.

 When the NORMQMAX is exceeded, the NetView program automates and

logs (if required) incoming messages and then discards them, without

interrupting the operator. The oldest messages are discarded until the

number of queued messages is half the NORMQMAX value.

 When the operator returns to the command facility (or the panel is

unlocked), message DSI593A indicates how many messages were

discarded.

 The value of NORMQMAX can range from 0 to 2147483647; the default is

3000. The minimum value allowed is 100 messages, so if you specify less

than 100, it will be rounded to 100. Specifying a NORMQMAX value of 0

means an infinite queue, and is basically the same as specifying the

maximum value of 2147483647.

 Attention: Setting the value of NORMQMAX too high might cause out of

storage conditions. Conversely, setting the value too low can prevent your

operators from seeing all of their messages even when message traffic rates

are low.

 The NORMQMAX value also applies to hardcopy printers and to

OST-NNT cross-domain sessions. Hardcopy printers can get backlogged

because they are slow or because they run out of paper. An OST-NNT

session can get backlogged because the message traffic over the session

exceeds the send rate for that session.

�10� Area for held and action messages

Use the HOLDPCNT statement in the SCRNFMT definition. The NetView

program uses 10 lines of the screen for the title line, immediate message

area, command area, and a warning held-message: DSI151I. Held messages

are not displayed in these 10 lines. You can use HOLDPCNT to specify

what percentage of the remaining lines you want to use for held messages.

For example, on a 24-line screen, setting HOLDPCNT to 100% will give

you 14 lines for held messages.

 Specifying HOLDPCNT as 0 means that held messages will not be

displayed on the screen. If HOLDPCNT is non-zero, the minimum number

of lines used for held messages is two.

 You can use HOLDWARN to get a warning message that held messages

exist, even though they are not displayed on the screen.

Note: The NetView program will not display the control line of a held

message without the data line of the message. This helps prevent

operators from accidentally erasing a held message without seeing

the text.

�11� Indentation

Use the INDENT and MLINDENT statements in the SCRNFMT definition.

Customizing the NCCF Panel

Chapter 2. Customizing the NetView Command Facility Panel 29

Separator line

The LASTLINE statement of the SCRNFMT definitions changes the color of

the dashed separator line between the new and old messages of the screen.

�12� Command entry indicator

Use the CMDLINE statement of the SCRNFMT definition.

Lock/unlock indicator (***)

Use the LOCKIND statement in the SCRNFMT definition.

�13� Immediate message area

Use the IMDAREA statement in the SCRNFMT definition.

�14� Command area

Use the CMDLINE statement in the SCRNFMT definition to change the

color used for the command input area. You can change the size of the

command area with the INPUT command.

Message Color and Highlighting

Four color and highlighting attributes can be set for messages:

v Foreground color

v Background color

v Intensity

v Highlighting

Note: Background color is not supported on most 3270 devices and emulators. In

this case, black is used for the background color.

The color and highlighting attributes for messages can be set in several places:

v In the automation table

v For MVS system messages, in the MVS MPF table

v In installation exits

v In a screen format definition

Of all of the options listed, the screen format definition takes the lowest

precedence. The following rules of precedence apply:

v MPF table color intensity and highlighting for MVS system messages override

the screen format definition for these attributes.

v Automation table specifications of color intensity and highlighting override the

following:

– The MPF table specified color intensity and highlighting

– Screen format definition of color intensity and highlighting

– DSIEX02A and DSIEX17 specification of color intensity and highlighting

(these exits are driven prior to automation).
v Installation exit specifications of color intensity and highlighting override the

MPF and the screen format definition for these attributes. In addition,

installation exit DSIEX16 (post-automation) can override the color intensity and

highlighting specified in the automation table.

Each of these presentation attributes can be manipulated independently. For

example, an MVS system message that had a match in the automation table with a

color action would be presented in the intensity and highlighting as specified in

the MPF table, but with the color as specified in the automation table.

Customizing the NCCF Panel

30 Customization Guide

Chapter 3. Using the VIEW Command

This chapter documents general-use programming interface and associated

guidance information.

The VIEW command processor can be used to display full-screen panels from

user-written programs. The VIEW command enables users to design their own

panels and control the color and highlighting of panel text.

The VIEW command enables command lists or command processors written in

PL/I or C to interact with an operator by means of full-screen panels. The data

from the command list or PL/I or C variables can be substituted into the panels.

Creating Full-Screen Panels

To create panels for your operators, define the text and format in a data set or file.

The panel source consists of a prologue, followed by text and variables that define

the panel to be displayed. Figure 9 on page 32 is an example of the information in

the help source file. See “General Help Fields” on page 32 for descriptions of each

numbered field in the figure.

If your display consists of a sequence of lines or messages, you may find it easier

to use the WINDOW command for your full-screen panel. WINDOW enables you

to alter its display and to define or redirect subcommands. For more information,

refer to the online help for WINDOW.

NetView provides a number of command lists that use the VIEW command to

display full-screen panels. Displaying a new panel by invoking VIEW from a

command list requires that you either modify an existing command list or write a

new one. When you modify an IBM-supplied command list, first copy it into a

user data set and change its name.

© Copyright IBM Corp. 1997, 2007 31

General Help Fields

The special characters in the source file, such as the dollar sign ($) and the percent

sign (%), are described in “Controlling Color and Highlighting of Fields” on page

38.

�1� Prologue

An optional section for programmer comments. Each line of the prologue

begins with /* in columns 1 and 2. Comments can only be placed in this

section. If comments are displayed in the Help or Option Definitions

section, a return code of 83 is sent, and the panel is not displayed.

Comments that are displayed after these sections are treated as data.

�2� Help

Optional definition of the panel. This field follows the prologue and is

coded in the following format:

Column

1 15

HELP=helppan comment

Note: You can also use HELP CMD='command_text'. See the following

description for �3�.

�3� Option Definitions

An optional list of selections the operator can choose. This list can contain

panel names or commands. You can add an optional comment after the

/***

/* (C) COPYRIGHT IBM CORP. 1996 �1�

/* DESCRIPTION: MENU FOR NCCF INFORMATION

/* CHANGE ACTIVITY:

/***

HELP=CNM5H000 help panel title �2�

1 CNM1OVER Cmd Facility Overview

2 CNMKTAAF TAF Help

3 CNMKNCSC Using NCCF Screens �3�

4 CMD=’HELP NCCF COMMANDS’

5 CNMZZZZZ Field Level Help

*** �4�

+CNMKNCCF �5� %COMMAND FACILITY HELP MENU �6�

$

$

\Select+ To get information about

$

$ %1 $Operator’s overview of the command facility

$ %2 $Using the terminal access facility (TAF)

$ �7�

$ %3 $The command facility screen

$ %4 $Command facility commands and command lists

$

$ %5 $Field level help

$

$

$

+Type a number (1 through 5) and press ENTER.

$

$

% HELP NETVIEW --->$NetView Help Menu

$

$

$

&CNMIMDL �8�

%Action===>~&CUR �9�

Figure 9. Example of Source for General Help Information

VIEW Command

32 Customization Guide

panel name or command. At least one blank must separate the panel name

or command from the comment. The list cannot exceed 49 entries. The list

is coded in the following format:

Column

1 3

n panel_name or CMD=‘command_text’ comment

Where n is the character the operator enters to call the panel or issue the

command.

 To produce a continuation panel, n is blank, as follows:

Column

1 3

 panel_name comment

In this case, panel_name identifies the continuation panel.

�4� Text Indicator

Three required asterisks separate the prologue, help, and panel definitions

from the displayed panel text. These asterisks can be followed by the

options listed below, which can appear in any order and must be separated

by at least one blank.

v The AT1 option is attribute set 1 for color and highlighting attributes.

See Table 9 on page 34 and Table 13 on page 39 for more information.

v The AT2 option is attribute set 2 for color and highlighting attributes.

See Table 9 on page 34 and Table 13 on page 39 for more information.

v The SFD (screen-format default) option means that when the color or

highlighting for a field on a VIEW panel is either specified or else

defaults to X'00' (the default for 3270), then the color or highlighting

specified for the NCCF screen by the DEFAULTS SCRNFMT command

or OVERRIDE SCRNFMT command is used. IF SFD is not specified, or

if no active SCRNFMT member is in effect, X'00' is sent to the device. If

the VIEW panel field is interpreted as the input command line, the color

and highlighting specified by the SCRNFMT CMDLINE is used; for any

other field, the SCRNFMT NORMAL specification is used. Sample

CNMSCNFT contains additional information.

v The XVAR option provides variables that can contain up to 31

characters, including periods.

Without this option, variables can contain only 11 characters and cannot

contain periods. See Table 9 on page 34 and “Compound Symbols” on

page 45 for more information on the XVAR option.

v The OPTROW=optchar option enables you to specify that any row (line)

that begins with the character defined by optchar is an optional row. The

maximum number of optional rows is defined as the number of rows

supported by the terminal, minus 24 (which can be zero). Optional rows

defined on the panel that go beyond this maximum are not displayed.

Also, rows (regular or optional) that go beyond the terminal’s limit are

not displayed.

For an optional row, all the characters are shifted left one position to

compensate for the optchar, and the resulting last position (column 80) is

treated as a blank.

See the WINDOW command list (CNME1505) and its View panel,

CNMKWIND, as an example of how to use OPTROW.

v The WIDE option enables the entire line width to be used on terminals

that support more than 80 columns. When WIDE is specified, panel

VIEW Command

Chapter 3. Using the VIEW Command 33

variables that are the last non-blank specifications on their respective

lines are substituted. The variables are not truncated until the end of the

line, which is defined by the terminal.

See the WINDOW command list (CNME1505) and its View panel,

CNMKWIND, as an example of how to use WIDE.

 Table 9. Examples of Using Text Indicator Options

Coding Results

*** AT1 v Attribute set 1

v English

v 11-character variable names, no periods

When three asterisks are followed by the AT2 option, attribute set 2 is used for

color and highlighting. For example:

v *** AT2 for English

v For attribute set 1, use *** or *** AT1

For attribute set 1 and variables as long as 31 characters, use *** AT1 XVAR for

English.

See “Controlling Color and Highlighting of Fields” on page 38 for more

information on attribute sets 1 and 2.

�5� Name

The name of the panel.

�6� Heading

The text that describes the use of the panel.

�7� Panel Text

Up to 24 lines of text that constitute the displayed panel. See also the

OPTROW option described under “Text Indicator” on page 33.

 Command list variables can appear anywhere in the panel text.See

“Displaying Variables in Source Panels” on page 43 for more information.

�8� Message Area

The variable &CNMIMDL displays NetView error messages on line 23 of

the panel. If the application has not provided a value for CNMIMDL,

VIEW searches the global dictionaries (task, then common) for a variable

named CNMIMxxx, where xxx is the application name provided when

VIEW was invoked. If the variable is not found, VIEW searches for

CNMIMVIEW in the same dictionaries. Finally, if none of these variables is

present, the text from message BNH257I is displayed. The default English

text for BNH257I is “TO SEE YOUR KEY SETTINGS, ENTER 'DISPFK'”. The

text of message BNH257I can be changed in the message translation table.

 See “Using PF Keys and Subcommands with VIEW” on page 57 for a list

of the subcommands that can be assigned to PF keys and “Customizing PF

Keys and Immediate Message Line” on page 24.

�9� Command Line

NetView commands are typed on the command line. In a VIEW command

with the NOINPUT option specified, a command line is defined by the

tilde (~) attribute symbol. The &CUR option identifies the cursor position

within the command line. Only one input field and only one &CUR option

is processed per panel. This option is useful for predefining a command in

the input field. Otherwise, the cursor defaults in the following order:

1. The last attribute variable that specified 'UY'

VIEW Command

34 Customization Guide

2. The first tilde field, if one is present

3. The first position in the upper-left corner

Coding the VIEW Command

Code the VIEW command as follows:

VIEW

��

VIEW compname pnlname

 NOINPUT

INPUT

 COMPAT

EXTEND

��

Where:

compname

Specifies the name (1–8 characters) that is used with PF key definitions by the

NetView program. The first character must be alphabetical. A distinct name

must be used for each separately rollable application.

pnlname

Specifies the name (1–8 characters) of the panel to be displayed.

NOINPUT

Specifies that the VIEW command does not return any information to the

procedure that invoked it. NOINPUT is the default. If the panel defines a

command line, the NetView program treats input as a command. With the

NOINPUT option, there is no need for your command procedure to invoke the

UNIQUE command.

 See Figure 9 on page 32 for the PF keys provided by the NetView program

when you specify NOINPUT.

INPUT

Specifies that input values and AID information may be returned to the

procedure invoking the VIEW command. INPUT also specifies that cursor

location may be received from and returned to the procedure invoking the

VIEW command. When you use the VIEW command with the INPUT option,

use the UNIQUE command to enforce uniqueness (only one occurrence of the

command on the roll stack). See “Using the UNIQUE Command” on page 48

for more information.

COMPAT

Specifies that the functionality for this invocation of VIEW is compatible with

the behavior of VIEW for releases of NetView prior to Version 5 Release 1.

Refer to the documentation for the prior release in which the program using

VIEW had been written for details of the functionality. The COMPAT option is

the default.

EXTEND

Specifies that the extended functionality introduced in Tivoli NetView for z/OS

Version 5 Release 1 be used for this invocation of VIEW. Examples of this

functionality are:

v The ability to have VIEW pick up any local variable values that are specified

and use those values rather than any global variable values that have been

specified.

v The ability for VIEW to be interrupted with RC=2 when a message is

trapped.

VIEW Command

Chapter 3. Using the VIEW Command 35

The EXTEND option can be used to allow dynamic updating of variables

without the need to run separate programs (using global variables) to perform

the updating.

The EXTEND option is not supported for the NetView command list language.

Usage Notes

v This table summarizes the difference between VIEW with the EXTEND option

and VIEW with the COMPAT option:

 Table 10. Comparison of VIEW with the EXTEND option and VIEW with the COMPAT option

Functionality

Behavior using

VIEW=EXTEND

Behavior using

VIEW=COMPAT

Search order for variables v Locally defined

v Control variables

v Task global

v Common global

Value retrieved from

local or global

dictionary according

to how the variable

was defined in the

CLIST invoking

VIEW.

View interrupted with RC=0 when message

is trapped?

Yes No

Changed value for global variable stored in

appropriate global dictionary?

Yes, if specified on

GLOBALV before

VIEW

Yes, if specified on

GLOBALV before

VIEW

Changed value for global variable stored in

local dictionary?

Yes No, although this is

irrelevant for

NetView CLIST

language.

Note: All subsequent descriptions of VIEW in this book assume the extended

functionality introduced in Tivoli NetView for z/OS Version 5 Release 1.

However, in order to use this functionality, you must specify the EXTEND

option on the VIEW command.

v By specifying NOINPUT, you can use a command procedure to display online

help panels. See Chapter 4, “Modifying and Creating Online Help Information,”

on page 65, for more information on how to code help panel hierarchies.

v You can use the VIEW command to display data from messages obtained

through TRAP processing immediately upon receipt of the message. Updates are

also possible from non-message sources on a timed basis. For more information,

see “Dynamic Update Capabilities” on page 59.

v The VIEW command is intended to be used only from a command procedure. If

you use the VIEW command in command lists to display a panel, minimum

processing should be done between exiting the view and the end of the

procedure. Operator input might be inhibited between the time the view is

ended and the end of the procedure.

v If a VIEW NOINPUT command is invoked with the same compname as a

previous VIEW command, then the previous VIEW command is canceled as well

as the command procedure that invoked that VIEW command.

VIEW Command

36 Customization Guide

Return Codes from VIEW and BROWSE

Table 11 lists and describes the return codes that can be received for the VIEW and

BROWSE command. The table also provides a brief description of the action you

need to take.

 Table 11. Return Codes from VIEW and BROWSE

Code Meaning Your Action

2 Trapped messages exist for this task. Discard or process the trapped

messages before calling VIEW or

BROWSE.

4 v Specified panel not found in CNMPNL1, CNMMSGF, or

CNMCMDF data sets

v Possible input/output (I/O) error.

Put panel definition in correct data

set or file.

8 Panel definition format not valid; no non-comment lines

found.

Correct format of panel definition.

12 You are not authorized to browse the member. Ask your system programmer to

redefine your authorization.

16 VIEW command processor invoked with parameters that are

not valid. Name1 must be 1 to 8 characters and name2 must be

a valid panel ID. Valid parameters are INPUT, NOINPUT,

MSG, NOMSG.

Correct command list to use valid

option.

24 Full-screen command processor is available to OST only. Do not invoke VIEW from a

non-OST.

28 Logical record length of panel not 80 bytes (VM only). Change file to logical record length of

80 bytes.

32 Unrecoverable error resulted from macro call. Error could be

that CNMMSGF or CNMCMDF has not been installed for

online message or command help. Also, refer to message

DWO050I in the NetView log.

Install CNMMSGF or CNMCMDF.

Contact IBM Software Support.

36 Unrecoverable internal programming error occurred. Also,

refer to message DWO050I in the NetView log.

Contact IBM Software Support.

40 Browse panel CNMBROWS, which is used for browsing

members, was not found.

Put CNMBROWS in correct data set

or file.

81 Panel definition format not valid; no text indicator line found,

or more than 49 option definitions found. (See Figure 9 on

page 32, for more information.)

Correct format of panel definition.

83 Panel definition format not valid; comment lines in wrong

place.

Correct format of panel definition.

Displaying VIEW Return Codes with SHOWCODE

The SHOWCODE command list is used by command procedures to display

descriptions of the nonzero return codes returned from the VIEW command.

Code the SHOWCODE command as follows:

SHOWCODE

�� SHOWCODE rc panelid ��

VIEW Command

Chapter 3. Using the VIEW Command 37

Where:

rc Is the name of the variable that contains the return code for which you want to

display a description.

panelid

Specifies the name of the panel that the VIEW command attempted to display

before issuing the return code. This parameter is only required for return codes

4, 8, 12, 28, 81, and 83.

SHOWCODE displays descriptions of the nonzero VIEW return codes as messages.

Table 12 shows the return codes and their related message IDs.

 Table 12. Nonzero VIEW Return Codes and Related Message IDs

Return Code Message ID

4 CNM335I

8 CNM336I

12 CNM337I

16 CNM338I

24 CNM340I

28 CNM341I

32 CNM342I

36 CNM343I

40 CNM9071

81 CNM388I

83 CNM390I

Before issuing SHOWCODE from a command procedure, check to make sure the

return code is not zero. See Figure 17 on page 61 for an example that uses

SHOWCODE to display error messages from VIEW.

Controlling Color and Highlighting of Fields

You can change or add to the color and highlighting of the existing panels. Text

color and highlighting in the displayed panel are controlled by attribute symbols

or variables. After you code attribute symbols in the source panel, they appear as

blanks in the displayed panel.

Scanning for attribute symbols or variables in a particular line occurs only if

column 1 contains an attribute symbol or panel variable. Otherwise, the line is

displayed as is, in the default color and without variable substitution.

Note: Color and highlighting depend on the kind of terminal you are using.

Attribute Symbols

You can specify attribute symbols on the source panel to color or highlight text.

Edit the source panel and replace the blank space before the text with an attribute

symbol selected from the second column of Table 13 on page 39 or Table 14 on

page 39.

Variables are parsed only at the first level. Nested VIEW variables are substituted

but not parsed. Therefore, color attribute symbols that are located in nested

variables are displayed as data.

VIEW Command

38 Customization Guide

An option specified in the header of a panel determines the set of attribute

definitions to use for that panel. If you specify no option (***), use the original set

(attribute set 1). Use attribute set 2 when you specify the option (*** AT2) on the

text indicator line of the panel definition. See “View-Based Help” on page 66 for

more information on the text indicator line.

 Table 13. Set 1 Color and Highlighting Attributes

Attribute Set 1 Symbol

Hex

Character Intensity Field

White % X'6C' High Text

Reversed white } X'D0' High Text

Underscored white ! X'5A' High Text

White ∼ X'A1' High Input

Turquoise $ X'5B' Normal Text

Underscored turquoise \ X'E0' High Text

Blue + X'4E' Normal Text

Reversed blue { X'C0' High Text

Green @ X'7C' Normal Text

Yellow ¬ X'5F' Normal Text

Pink ¦ X'6A' Normal Text

Red ¢ X'4A' High Text

 Table 14. Set 2 Color and Highlighting Attributes

Attribute Set 2 Symbol

Hex

Character Intensity Field

White % X'6C' High Text

Reversed white } X'D0' High Text

Reversed red ! X'5A' High Text

White ∼ X'A1' High Input

Turquoise $ X'5B' Normal Text

Reversed green \ X'E0' Normal Text

Blue + X'4E' Normal Text

Reversed blue { X'C0' Normal Text

Green @ X'7C' Normal Text

Yellow ¬ X'5F' High Text

Reversed yellow ¦ X'6A' High Text

Blinking red ¢ X'4A' Normal Text

Displaying Special Attributes

If you want to display a particular symbol that doubles as an attribute within a

colored or highlighted row, place a double quotation mark (") in front of the

symbol. For example, if you want the left brace ({) to appear in text, enter ″{ in the

source panel. If you want to display a double quotation mark ("), enter "". When

you use a double quotation mark (") in the source panel, the text following the

double quotation mark is shifted to the left in the displayed panel. When the same

VIEW Command

Chapter 3. Using the VIEW Command 39

hexadecimal values for these symbols are coded as part of double-byte character

text surrounded with shift-out and shift-in control characters, they are not treated

as attributes.

Using the + Attribute

Be careful how you use the plus sign (+) for the color blue. If you want to assign

the color blue to a variable defined by the NetView command list language,

enclose the plus sign within a pair of single quotation marks as follows:

&COLOR = '+'

To assign the color blue to the REXX variable A so that its contents, G, are

changed to blue, do the following:

A = '+G'

Without the pair of single quotation marks, the NetView program interprets the

plus sign as a continuation character.

Using the $ and the @ Attributes

Because the $ character and the @ character are often used as data inside a

command list or REXX variable, VIEW treats them differently when defined in a

panel or in a variable. When in a panel, they are treated as attribute symbols as

described in Table 13 on page 39 and Table 14 on page 39. When in a variable, they

are treated as data. If the associated attributes are needed inside a variable,

substitute the greater than (>) and less than (<) signs as synonyms for @ and $

respectively. Use the respective synonym in your command list. In the following

NetView command list example, the AMOUNT field displays the string $1,000 in

turquoise and the HEIGHT field displays the string @ 6 feet in green.

&AMOUNT = '<$1,000'

&HEIGHT = '>@ 6 feet'

This is what the same example would look like in REXX.

AMOUNT = '<$1,000'

HEIGHT = '>@ 6 feet'

When they are not used in a variable, the less-than and the greater-than symbols

are displayed as characters.

Attribute Variables

Attribute variables are assigned in the command procedure that drives the view

panel. An alternative to defining attribute symbols on the panel or within the

variable data is to define attribute variables that are associated with panel

variables. Attribute variables describe attributes associated with panel variables

and their text following on the same line. Using an attribute variable provides a

wider range for attribute selection and allows you to define input fields. When you

use an attribute variable, the contents of the associated panel variable are not

scanned for attribute symbols.

An attribute variable name is formed by concatenating a dollar sign onto the front

of the panel variable name. For example, in NetView command list language, the

attribute for panel variable &V1 is defined in a variable called &$V1.

In REXX, PL/I, and C, the ampersand (&) is not used. For a PL/I or C program,

attribute variables must be set using CNMVARS in PL/I or Cnmvars in C.

The following is the syntax for the contents of an attribute variable:

VIEW Command

40 Customization Guide

�� attribute variable = ' tv tv tv... ' ��

where tv is the type value pair. Multiple pairs of the same type in one attribute

variable are allowed. The last pair is accepted and the previous pairs are ignored.

The values for type value are as follows:

tv =

type value

A =

Alarm

AN

No audible alarm

AY

Audible alarm (beep) when panel is presented

Note: The alarm specification only applies to the attribute variable for

the immediate message line ($CNMIMDL).
C =

Color

CB

Blue

CD

The default device color when a color value is not specified

CG

Green

CP

Pink

CR

Red

CT

Turquoise

CW

White or neutral

CY

Yellow
F =

Field

FA

Protected; data cannot be entered on displayed panel; FA is the default

FI Unprotected; data can be entered on displayed panel
H =

Highlight

HB

Blinking

HD

The default extended highlighting when a highlighting value is not

specified

HR

Reverse video

HU

Underscored

VIEW Command

Chapter 3. Using the VIEW Command 41

I =

Intensity

ID Dark, nondisplayable

IH High intensity

IN Normal intensity; the default when an intensity value is not specified
U =

Cursor

UN

The cursor is not placed at the beginning of this field; UN is the

default.

UY

The cursor is placed at the beginning of this field. UY specifications for

multiple variables cause the last variable specified to be accepted and

the previous variables to be ignored.

Notes:

1. If you do not want the cursor to be associated with a particular

variable, you can place the cursor in any row and column. Use the

VIEWICROW and VIEWICCOL variables in the procedure that calls

VIEW with the INPUT option. See “Full-Screen Input Capabilities”

on page 50 for more information on the VIEWICROW and

VIEWICCOL variables.

2. If you use the VIEWICROW and VIEWICCOL variables and also

specify UY on an attribute variable, the cursor is positioned by the

attribute variable.

3. If you do not use the VIEWICCOL and VIEWICROW variables or

specify a cursor for any attribute variable on a panel, the cursor is

placed at the beginning of the first input field.

 Use one or more blanks to separate the type value pairs. The following is a NetView

command list language example where &V1 is defined as a protected field with

high intensity in red. &V2 is defined as a protected field in high intensity, in

turquoise, with the cursor placed in the field.

&$V1 = ’FA IH CR’

&$V2 = ’IN IH CT UY IH’

In the following REXX example, V1 is defined as an input variable (unprotected

field) with no cursor. For V2, all the defaults are used.

$V1 = ’FI UN’

$V2 = ’ ’

Attributes defined by attribute variables or attribute symbols apply until one of the

following is encountered:

v The end of the line

v The explicit placement of an attribute symbol later in the line

v A variable later in the line that has one of the following:

– A valid attribute variable that specifies new attributes

– No valid attribute variable, but contains one or more attribute symbols.

Constants or variables defined on a panel can become part of an input field and

are updated only when you type over some portion of the input field. When you

enter data in an input field, the entire contents of the input field are assigned to

the panel variable.

VIEW Command

42 Customization Guide

The first byte of a field defined by a panel variable (the &) is used for attribute

specification, and is followed by the contents of the variable. If an attribute

variable corresponds to a panel variable, it takes effect at this first byte even if the

panel variable is not found (and is replaced by blanks).

Note: If an attribute variable contains a syntax error and the NetView log is active,

message CNM944I is written to the log.

Displaying Variables in Source Panels

When the VIEW command attempts to resolve a variable name coded on the panel

definition, it searches the following environments in the following order until it

finds a defined variable that contains a value:

v Variables assigned in the command procedure

v Control variables (such as &OPID)

v Task global variables

v Common global variables

If a variable name specified on the panel is not defined to any of the previous

environments, it is displayed as a string of blanks. Note that variables that are

defined as control or global variables may also be assigned in the invoking

command procedure. The value assigned to it is displayed on the panel instead of

the control or global variable value.

If the associated attribute variable is not defined, the substituted value of a

variable is scanned for attribute symbols. The located attribute symbols are used in

controlling color, highlighting, and data fields. If symbols are to be displayed as

symbols and not used as attributes then code an associated attribute variable for

the variables. This causes the symbols in the data to be treated as data instead of

attribute variables.

When an attribute symbol is to be displayed as data, special rules must be

followed. See “Displaying Special Attributes” on page 39 and “Attribute Variables”

on page 40 for more information on these rules.

Note: If the XVAR option is not coded on the panel text indicator line, use only 1

to 11 alphanumeric characters (A–Z and 0–9) for the variable names in

VIEW panel definitions. If the XVAR option is coded, variable names can be

up to 31 characters long and contain periods. See “Compound Symbols” on

page 45 for more information. Alphabetical characters must be in uppercase.

Variable names also must conform to any other variable naming conventions

set by the language invoking VIEW if the variable is to be referenced by that

language. For example, variable names used in PL/I, C, and REXX must

start with an alphabetical character.

Although global variables can be found and displayed using VIEW, they can

also be referenced by the command procedure prior to running the VIEW

command. Global variables are defined by &TGLOBAL, &CGLOBAL, or

GLOBALV in NetView command list language, GLOBALV in REXX,

CNMVARS or GLOBALV in PL/I, or Cnmvars or GLOBALV in C.

VIEW Command

Chapter 3. Using the VIEW Command 43

Reference: Refer to IBM Tivoli NetView for z/OS Programming: REXX and the

NetView Command List Language or IBM Tivoli NetView for

z/OS Programming: PL/I and C for more information about global

variables.

For the VIEW command to find local or attribute variables when invoked from a

high-level language program, the variable must be set using CNMVARS in PL/I or

Cnmvars in C.

A REXX user can update the values of global variables using the VIEW command

as long as the following tasks are performed for the variable varname before

starting VIEW:

1. Define the field used by the global variable on the VIEW panel as an input

field using an attribute variable.

2. Issue a GLOBALV DEFT (or DEFC) varname command to define the global

variable.

3. Ensure that varname is defined (having a non-null value) in the common or task

global dictionary. Use GLOBALV PUTT (or PUTC) varname to store a value, if

necessary.

If all the steps listed above are followed, the global variable varname is updated.

Otherwise, the REXX local variable varname is displayed and updated. When VIEW

accesses a global variable this way, any REXX local variable with the same name is

also modified by VIEW. In order to access the new value for a global variable, the

REXX user must issue a command such as GLOBALV GETT (or GETC) to get a

local copy of the value.

If you specify a NetView control variable (for example, APPLID or OPID) on a

VIEW panel, and the field is defined as an input field, the updated value is only

stored in the command procedure environment. Control variable values cannot be

updated.

The following REXX example shows how you can use VIEW to update a global

variable:

/* */

’GLOBALV GETT XYZ’

IF LENGTH(XYZ) = 0 THEN

 DO

 XYZ = ’ ’

 ’GLOBALV PUTT XYZ’

 END

$XYZ = ’FI’

’VIEW NAME1 TESTPANL INPUT EXTEND’

SAY ’XYZ IS NOW’ XYZ

EXIT

If the length of the value assigned to the variable exceeds the length of the variable

in the source panel, and if the variable is followed by alphanumeric or special

characters (such as !, ¢, \, ¦, @, #, $, %, ¬, &, ", +) on the panel definition, the value

is truncated. When a variable is followed by characters other than these mentioned

(such as a period or a dash), the characters are overwritten.

If the value assigned to the variable contains double-byte text, all the double-byte

text must be within DBCS shift-out and shift-in characters. If the panel cannot

display all the double-byte text within a pair of DBCS shift-out and shift-in

characters, VIEW displays all the text that fits and displays a period (.) to indicate

a truncated character.

VIEW Command

44 Customization Guide

For example, if a variable named &DBCSTEXT is defined with a value of “NetView

Help Menu” in Kanji, this value may be truncated because the field on the panel is

too short, because the operator has scrolled the panel to the right or left, or

because an application which uses VIEW has truncated data. For instance, the

NetView WINDOW command uses VIEW to handle double-byte character

truncation. Here is the hexadecimal representation of the double-byte Kanji

characters, showing the text length:

....+....1....+....2....+....3..

04945494D4545444A4A4D444A4945450

E39363530343835323F373537373438F

If the panel definition allows fewer than 32 characters for the value of &DBCSTEXT,

or if the operator scrolls the text so that fewer than 32 characters can be displayed

on the panel, VIEW displays all characters that will fit. If VIEW can only display

one-half of a double-byte character, it substitutes a period (.) for the displayable

part of the character in the same way that BROWSE handles leading and trailing

double-byte text truncation for netlogs. In this example, if the first two bytes were

truncated, VIEW would substitute a shift-out (X'0E') for the non-displayable last

half of the first double-byte character (X'4399'). If the first three bytes were

truncated, VIEW would substitute a period and a shift-out character (X'4B0E') for

the entire second double-byte character (X'4356').

If an operator tries to display a VIEW panel that does not have properly defined

double-byte shift-out and shift-in pairs, a data stream that is not valid will be sent

to the device, and unpredictable results, such as the operator being logged off, will

occur. Examples of DBCS definitions in which the double-byte shift-out and shift-in

characters are improperly matched:

v A greater number of shift-out or shift-in characters (not paired)

v One pair split between two or more variables

v One pair split between a variable and a panel definition

v One pair split across more than one line of a panel

Compound Symbols

A compound symbol contains at least one period and at least one other character.

It cannot start with a digit or a period. If there is only one period, the period

cannot be the last character.

The name begins with a STEM (part of the symbol up to and including the first

period), which is followed by PARTs of the name (delimited by periods) that are

constant symbols, simple symbols, or null. A constant symbol starts with a digit

(0–9) or a period. A simple symbol contains no periods and does not start with

digits (0–9).

VIEW starts with a compound symbol coded in a panel. VIEW then creates a

derived variable name by replacing PARTs with their values. VIEW then requests

the value of the derived variable for display in the panel.

This example is a small extract from a REXX program:

VIEW Command

Chapter 3. Using the VIEW Command 45

Implementation Maximum

All HLL and REXX variables are restricted to 31 characters when the panel text

indicator has the XVAR option; otherwise, the limit is 11. NetView command list

language does not support compound variables or variable names longer than 11

characters. It is important to note the differences between the way REXX displays

the string and the way VIEW displays the string.

Usage Notes

1. VIEW does not support mixed case symbols defined in REXX. For example, a.c

in Figure 10 is displayed as 5 in VIEW, but REXX will display it as Bill.

2. VIEW displays blanks for the value of the compound variable if the final value

is undefined, null, or not valid.

In Figure 10 a.a, c.a, and x.d.4 are displayed as blanks in VIEW.

3. VIEW does not distinguish unknown compound variable PARTs from those

with null values. When a PART is null or unknown, its NAME is used in

building the compound variable name. In Figure 10, VIEW searches for &X.D.4,

not &X..4, and thus cannot find Annie.

4. Enter *** XVAR in the text indicator section of your panel definition in order to

use compound variables. See “Text Indicator” on page 33 for more information.

Issuing Commands from Command Procedures

When a command is issued directly from a command procedure, the procedure is

suspended until that command completes. When the called command is complete

and the return code is available, the procedure resumes. If the called command is a

long-running command, it and the calling procedure form a group that is treated

as a unit by the NetView ROLL command (roll group).

Note: The BGNSESS FLSCN command is an exception because it allows a calling

procedure to complete before the session begins by using the MINOR option

of DSIPUSH. Refer to IBM Tivoli NetView for z/OS Programming: Assembler

for information about DSIPUSH.

 a=3 /* assigns ’3’ to the variable ’A’*/

 b=4 /* ’4’ to ’B’ */

 c=’Fred’ /* ’Fred’ to ’C’ */

 a.b=’Fred’ /* ’Fred’ to ’A.4’ */

 a.fred=5 /* ’5’ to ’A.FRED’ */

 a.c=’Bill’ /* ’Bill’ to ’A.Fred’ */

 c.c=a.fred /* ’5’ to ’C.Fred’ */

 x.a.b=’Annie’ /* ’Annie’ to ’X.3.4’ */

 d=’’ /* ’’ to ’D’ */

 e=’4’ /* ’4’ to ’E’ */

 x.d.e=’Annie’ /* ’Annie’ to ’X..4’ */

 say a b c a.a a.b a.c c.a a.fred x.a.4 x.d.4

 /* */

 /* Rexx will display the following values: */

 /* 3 4 Fred A.3 Fred Bill C.3 5 Annie Annie*/

 /* If these same variables are displayed on a View panel */

 /* (preceded by ’&’ and in upper case) and if the View panel */

 /* definition includes the XVAR option, View displays the following */

 /* values: */

 /* 3 4 Fred Fred 5 5 Annie */

Figure 10. Example of a REXX Program Requesting Values of Variables for a VIEW

VIEW Command

46 Customization Guide

Grouping commands and procedures is beneficial if the intent is to build a

hierarchy of related panels, using different procedures to build each one. You

should not group commands and procedures when running unrelated commands,

such as those received from an operator.

To disassociate an unrelated command from the calling procedure, use the CMD

command. To illustrate this, assume that the variable cmdline contains an operator's

command that was entered on your panel. You can queue the cmdline command

asynchronously by issuing one of the following in your REXX command

procedure:

’CMD HIGH ’ cmdline

’CMD LOW ’ cmdline

The HIGH or LOW parameter of the CMD command indicates the priority at

which the command should be queued.

Note: Issuing the CMD command with the HIGH parameter usually interrupts

other processing, allowing the queued command to run.

For example, suppose an operator enters the STATMON command on the

command line of your panel. By using the CMD command, you can queue

the STATMON command rather than calling it directly. This allows the

operator to roll back to your command procedure from STATMON, even

though STATMON is not complete. Refer to IBM Tivoli NetView for

z/OS Programming: Assembler for more information about the ROLL function

and the NetView online help for more information about the CMD

command.

Queuing, rather than calling a command, protects your procedure from any reset

condition the queued command encounters.

Creating a Rollable Component with VIEW

A NetView component is a command or command procedure that controls the

terminal’s screen, provides for operator entry of arbitrary NetView commands, and

is capable of resuming when such commands are complete. In a command

procedure, you can create a rollable component using VIEW to provide the

necessary screen control.

If you specify the NOINPUT option, VIEW handles the operator command

interface for you. If you specify the INPUT option on your VIEW command, VIEW

returns the operator’s input to your procedure in the form of named variables, one

or more of which may be treated as a command.

The commands contained in these variables must be in uppercase for the NetView

program. PL/I and C command procedures should verify that these command

strings are in uppercase before issuing CNMCMD. The NetView command list

language provides the UPPER command for translating the contents of a variable

to uppercase. REXX command lists can use the UPPER instruction to ensure that

commands are in uppercase.

Using the UPPER Command

Use the UPPER command to change the contents of the specified variables to

uppercase.

The format of the UPPER command is:

VIEW Command

Chapter 3. Using the VIEW Command 47

UPPER

��

UPPER

�

 ,

variable

��

Where:

variable

Specifies the 1- to 11-character name of the variable to be translated to

uppercase. The comma in the repeat separator indicates that you can optionally

specify more than one variable name on an UPPER command.

Example:

UPPER CMDLINE

CMD HIGH &CMDLINE

Usage Notes:

1. Do not specify the leading ampersand (&) in front of the variable name.

2. If you specify more than one variable, all variables are translated, even if one of

the variables has an error condition (not found or the length is not valid).

3. The UPPER command is provided in the NetView command list language only.

A similar function is available to REXX command lists with the REXX UPPER

instruction.

4. The UPPER command should not be concatenated with other commands in a

command string.

Return Codes: The return codes for this command are as follows:

 0 Successful completion of all specified variables

 4 At least one variable not found, or at least one variable is not valid

 8 At least one variable length not within range

12 At least one variable not found and at least one other variable length not

within range

16 Not invoked from a command procedure

20 No variables specified

Using the UNIQUE Command

With the UNIQUE command you can search the roll stack for a component that

has a subcomponent with the same member name (for command lists and REXX)

or module name (for PL/I and C) as the issuing command procedure. If such a

component is found, the UNIQUE command allows only one of the two

components to remain on the roll stack, either the issuing component or the older

component.

The format of the UNIQUE command is:

VIEW Command

48 Customization Guide

UNIQUE

��

UNIQUE

 CANCEL

CANCEL

PROMOTE

��

Where:

CANCEL

Specifies to reset (CANCEL) the roll group containing the matching element on

the roll stack as the currently running component. CANCEL is the default.

(The issuing component remains on the roll stack.)

PROMOTE

Specifies to position (PROMOTE) the roll group containing the matching

element on the roll stack as the currently running component.

Usage Notes

 1. The UNIQUE command is valid only when issued from a command list.

 2. The NetView program allows an operator to start many copies of the same

command processor. You might not want more than one copy, as when

creating a NetView component. By using DSIPOP or DSIPUSH with the

PROMOTE option, assembler programmers guarantee the uniqueness of

long-running commands. Using the UNIQUE command guarantees

uniqueness in a command procedure.

 3. Issuing UNIQUE from your procedure has no effect (and gives a return code

of 0) if the current copy of the procedure is the only one active. An active

long-running command or procedure is one that is in any stage of its

processing but is not yet complete. Active procedures include procedures that

are suspended (blocked) by some other long-running command. If another

copy of the same procedure exists under the same task, the UNIQUE

command affects the entire roll group that includes that copy.

 4. When you use UNIQUE with the CANCEL option (the default format), the

calling procedure is temporarily suspended while the older copy is given

control with a reset condition. The NetView program suppresses the

cancellation messages normally issued when a procedure is reset. When the

canceled copy of the procedure and any others in its group complete, the

issuing copy resumes with the next line after the UNIQUE command. The

return code is set to 4.

 5. Using the UNIQUE command with the PROMOTE option moves the previous

copy of the calling procedure and its roll group to the top of the roll stack,

ready to resume when the copy issuing UNIQUE completes. The return code

is set to 4. The procedure invoking UNIQUE should exit at this point to allow

the promoted procedure to regain control. An exit code −5 is used to let the

caller know that it can now regain control.

 6. When you use UNIQUE in NetView command list language, code a

suppression character (&SUPPCHAR) to suppress unwanted command echoes

that occur when the command has an error. Code SIGNAL ON HALT in your

REXX procedures to suppress the REXX cancellation message. The HALT

subroutine should return a −5 return code. When you code SIGNAL ON

ERROR in your REXX procedures, a return code of 4 signals the error label.

VIEW Command

Chapter 3. Using the VIEW Command 49

7. No special processing is required for the ROLL command. It is issued in the

same way as other NetView commands. To be consistent with other NetView

applications, set PF6 and PF18 to issue the ROLL command.

 8. Parameter synonyms are supported.

 9. Parameter authorization restrictions are not appropriate for the UNIQUE

command.

10. Upon cancellation of a component, REXX, PL/I, and C command procedures

can perform a cleanup.

Return Codes: The return codes for this command are as follows:

 0 The calling procedure is unique.

 4 A matching procedure was found. Action successful.

12 Environment is not valid (not called from a procedure).

16 Syntax error, argument is not valid.

Full-Screen Input Capabilities

The VIEW command can receive the following values from the calling procedure:

v The cursor row position

v The cursor column position

You specify this information with the INPUT keyword and by coding

VIEWICROW and VIEWICCOL in the calling procedure. When the panel is

displayed, the cursor is positioned at the location specified by VIEWICROW and

VIEWICCOL. If you used an attribute variable to associate the cursor with a

variable, that overrides cursor positioning by VIEWICROW and VIEWICCOL.

Table 15 on page 51 describes these two variables.

The VIEW command allows the following to be returned to the invoking

procedure:

v The contents of multiple input-capable variables on a panel

v The attention identifier (AID) information

v The cursor location

v The number of panel rows put out by the VIEW command

v The number of panel columns put out by the VIEW command

You specify this information with the INPUT keyword and by coding an attribute

variable with the FI type value pair.

When you use the INPUT option, an input field is available only if you defined an

attribute variable specifying FI. (See “Attribute Variables” on page 40 for

information on the type value pair.)

When the panel is displayed, it contains the variable values that you can modify

by typing over them. The modified variables are returned to the invoking

procedure when you press the AID key. Table 16 on page 52 describes the AID key

and the variables that are set on return to the calling command procedure.

VIEW Command

50 Customization Guide

Table 15. Variables Specified in the Calling Command Procedure

REXX, PL/I, and C

NetView Command

List Language Description

VIEWICCOL &VIEWICCOL The cursor location (column) set by the

command procedure that calls VIEW. Use

this variable with VIEWICROW to position

the cursor anyplace on the panel. An

acceptable value is a positive or negative

integer less than or equal to the number of

columns on the panel. A positive integer

positions the cursor relative to the left side;

a negative integer, relative to the right side.

If you specify an integer greater than the

number of columns on the panel, the cursor

is placed at the beginning of the first input

field. See Figure 11.

VIEWICROW &VIEWICROW The cursor location (row) set by the

command procedure that calls VIEW. Use

this variable with VIEWICCOL to position

the cursor anyplace on the panel. An

acceptable value is a positive or negative

integer less than or equal to the number of

rows on the panel. A positive integer

positions the cursor relative to the top; a

negative integer, relative to the bottom. If

you specify an integer greater than the

number of rows on the panel, the cursor is

placed at the beginning of the first input

field. See Figure 11.

Assume a panel 80 x 24, and the calling procedure specifies:

VIEWICCOL = 2

VIEWICROW = 2

The cursor is placed in the second column from the left, second row from the top.

VIEWICCOL = -2

VIEWICROW = -2

The cursor is placed in the second column from the right, second row from the bottom.

VIEWICCOL = 82

VIEWICROW = 22

The cursor is placed at the beginning of the first input field because one of the variables

specifies a value that is greater than the panel size.

Figure 11. VIEWICCOL and VIEWICROW Examples

VIEW Command

Chapter 3. Using the VIEW Command 51

Table 16. Variables Set on Return to Calling Command Procedure

REXX, PL/I, and C

NetView Command

List Language Description

VIEWAID &VIEWAID The AID key used to enter the input.

VIEWCURCOL &VIEWCURCOL The cursor location (column) when the AID

key is pressed.

VIEWCURROW &VIEWCURROW The cursor location (row) when the AID

key is pressed.

VIEWCOLS &VIEWCOLS The number of columns output by the

VIEW command. The default number will

be 80 if neither WIDE nor OPTROW is

coded on the panel text indicator line, or if

the terminal only supports 80 columns.

Otherwise, VIEWCOLS is set to the number

of columns supported by the terminal. See

Chapter 4, “Modifying and Creating Online

Help Information,” on page 65 for more

information.

VIEWROWS &VIEWROWS The number of rows (lines) of the given

panel that were output by the VIEW

command, which is determined by the

number of regular data lines in the source

panel, the number of optional data lines in

the source panel, and the number of rows

available on the output terminal. See

Chapter 4, “Modifying and Creating Online

Help Information,” on page 65 for more

information.

The contents of the VIEWAID variable are defined as PF1 through PF24, PA1, PA2,

PA3, or the ENTER key.

If you press PA1, PA2, or PA3, only the AID (VIEWAID) information is returned to

the invoking procedure. The cursor row, column locations, and any input fields

defined on a panel are not returned.

Note: If you press the ATTN key on an SNA terminal, VIEW with

INPUT/NOINPUT ends.

Figures 12 through 16 illustrate source panels using VIEW with the INPUT option

to create a rollable component. Figure 12 and Figure 13 on page 53 show the source

panels containing input-capable variables to be replaced. These panels use

attributes from attribute set 2 (see Table 14 on page 39).

VIEW Command

52 Customization Guide

Figure 14 on page 54 is an example of a REXX command list that invokes VIEW

with the INPUT option to display PANEL1. The command list assigns initial values

to the VARIN1 and VARIN2 input-capable variables in the source panel. The

command list also returns the AID information and command line input to the

caller.

/**/

/* FIRST PANEL DISPLAYED */

/**/

*** AT2

+PANEL1

$ X==X

$ | |

$ | |

$ |% PPPPPPP AAAAAAA NN NN EEEEEEEE LL 111 $ |

$ |% PP PP AA AA NNN NN EE LL 11 11 $ |

$ |% PPPPPPPP AAAAAAAAA NN NN NN EEEEEEEE LL 11 $ |

$ |% PP AA AA NN NNN EE LL 11 $ |

$ |% PP AA AA NN NN EEEEEEEE LLLLLLLL 11111111$ |

$ |--|

$ | INPUT VARIABLE 1 = &VARIN1 $|

$ | INPUT VARIABLE 2 = &VARIN2 $|

$ | |

$ | You entered: &VAROUT1 |

$ | You also entered: &VAROUT2 |

$ X==X

$

$Enter a command on the command line OR...

$Enter NEXT or press PF8 to view the next panel.

$

%Action==> &COMMAND %

$ PF2= End

$ PF6/PF18= Roll PF8=Next

Figure 12. Source for First Panel with Input-Capable Variables and Command Line

/**/

/* SECOND PANEL DISPLAYED */

/**/

*** AT2

+PANEL2

$ X==X

$ | |

$ | |

$ |% PPPPPPP AAAAAAA NN NN EEEEEEEE LL 22222222 $ |

$ |% PP PP AA AA NNN NN EE LL 22 $ |

$ |% PPPPPPPP AAAAAAAAA NN NN NN EEEEEEEE LL 22222222 $ |

$ |% PP AA AA NN NNN EE LL 22 $ |

$ |% PP AA AA NN NN EEEEEEEE LLLLLLLL 22222222 $ |

$ | |

$ |--|

$ | |

$ | |

$ | |

$ | |

$ | |

$ X==X

$

$Enter a command on the command line OR...

$Enter BACK or press PF7 to view the previous panel.

$

%Action==> &COMMAND %

$ PF2= End

$ PF6/PF18= Roll PF7= Previous

Figure 13. Source for Second Panel with Command Line Only

VIEW Command

Chapter 3. Using the VIEW Command 53

/***/

/* EXAMPLE: NETVIEW COMPONENT USING THE VIEW COMMAND */

/***/

SIGNAL ON HALT

/***/

/* RESUME OLD COPY IF ONE EXISTS */

/***/

 ’UNIQUE PROMOTE’

 if rc = 4 then EXIT -5 /* -5 will cancel caller if it exists */

SIGNAL ON ERROR /* any nonzero rc other than as a result of the */

 /* UNIQUE command is an error */

/***/

/* set up VAR1 and VAR2 as input capable fields */

/***/

$VARIN1 = ’FI IN CR HB UN’

$VARIN2 = ’FI IH CG HR UN’

/***/

/* set up COMMAND as an input command line using an attribute */

/* variable. Also define the cursor to stop at this field. */

/***/

$COMMAND = ’FI UY’

 VARIN1 = ’INITIALIZE 1’

 VARIN2 = ’INITIALIZE 2’

Do forever

 COMMAND = ’00’X /* COMMAND = nullchar (this clears */

 /* the command line and provides */

 /* for insert capability) */

 ’VIEW USERAPPL PANEL1 INPUT’

 UPPER COMMAND

 VAROUT1 = VARIN1

 VAROUT2 = VARIN2

 SELECT

 When viewaid = ’PF2’ then exit /* Quit if PF2 */

 When viewaid = ’PF6’ then CMD HIGH ROLL /* Roll if PF6 */

 When viewaid = ’PF8’ then call PANEL2 /* Next panel if PF8 */

 When viewaid = ’ENTER’ then

 SELECT

 when command = NEXT then call PANEL2

 /***/

 /* Assume any other input given on command line is */

Figure 14. Example of a REXX Command List that Drives a Rollable Component (Part 1 of 2)

VIEW Command

54 Customization Guide

Figure 15 on page 56 is an example of the first panel created from this command

list. See Figure 12 on page 53 for the source for this panel. The variables VARIN1

and VARIN2 are replaced with the actual values INITIALIZE 1 and INITIALIZE 2,

respectively. The attribute specification is defined by $VARIN1 and $VARIN2 (see

“Attribute Variables” on page 40 for more information).

The following attributes are for VARIN1 where the length of the input field

continues until the next attribute symbol is encountered. In this case, the attribute

symbol is %.

VARIN1 attributes are as follows:

v Input, tab (unprotected)

v Normal intensity

v Red

v Blinking

v No cursor position

 /* to be issued to NCCF */

 /***/

 when COMMAND ¬= ’ ’ then

 DO

 ’CMD HIGH’ COMMAND

 END

 otherwise nop

 END

 OTHERWISE nop

 End /* select */

End /* Do forever */

PANEL2:

Do forever

 COMMAND = ’00’X /* COMMAND = nullchar (this clears */

 /* the command line and provides */

 /* for insert capability) */

 ’VIEW USERAPPL PANEL2 INPUT’

 UPPER COMMAND

 SELECT

 When viewaid = ’PF2’ then exit /* Quit if PF2 */

 When viewaid = ’PF7’ then return /* Previous panel PF7*/

 When viewaid = ’PF6’ then ’CMD HIGH ROLL ’ /* Roll if PF6 */

 When viewaid = ’ENTER’ then

 SELECT

 When COMMAND = ’BACK’ then return

 /***/

 /* Assume any other input given on command line is */

 /* to be issued to NCCF */

 /***/

 when COMMAND ¬= ’ ’ then

 DO

 ’CMD HIGH’ COMMAND

 END

 otherwise nop

 END

 OTHERWISE nop

 End /* select */

End /* Do forever */

RETURN

ERROR:

 EXIT -1 /* -1 means "FATAL ERROR IN NESTED PROCEDURE" */

HALT:

 EXIT -5 /* -5 means "CANCEL REQUESTED" */

Figure 14. Example of a REXX Command List that Drives a Rollable Component (Part 2 of 2)

VIEW Command

Chapter 3. Using the VIEW Command 55

The following attributes are for VARIN2 where the length of the input field

continues until the end of the line.

VARIN2 attributes are:

v Input, tab (unprotected)

v High intensity

v Green

v Reverse video

v No cursor position

COMMAND attributes are:

v Input, tab (unprotected)

v Position the cursor at the beginning of this field

 Figure 16 on page 57 shows a second display panel from the command list. See

Figure 13 on page 53 for the source for this panel.

PANEL1

 X==X

 | |

 | |

 | PPPPPPP AAAAAAA NN NN EEEEEEEE LL 111 |

 | PP PP AA AA NNN NN EE LL 11 11 |

 | PPPPPPPP AAAAAAAAA NN NN NN EEEEEEEE LL 11 |

 | PP AA AA NN NNN EE LL 11 |

 | PP AA AA NN NN EEEEEEEE LLLLLLLL 11111111 |

 |--|

 | INPUT VARIABLE 1 = INITIALIZE 1 |

 | INPUT VARIABLE 2 = INITIALIZE 2 |

 | |

 | You entered: |

 | You also entered: |

 X==X

Enter a command on the command line OR...

Enter NEXT or press PF8 to view the next panel.

Action==> _

 PF2= End

 PF6/PF18= Roll PF8=Next

Figure 15. Display Panel of Component with Variables Replaced by REXX Command List

VIEW Command

56 Customization Guide

Returning Command Line Input

When you specify NOINPUT for the NetView program to start processing at the

command line, you should define a tilde (~) on the panel to be displayed.

The tilde definition defines an input field that is returned to the NetView program

as a command. An &CUR coded after the tilde on the same line determines where

the cursor is positioned.

The &CUR is useful for predefining a partial command. For example:

 ~ V NET,ACT,ID=&CUR

coded on a panel displays:

V NET,ACT,ID=_

with the remaining ID to be completed by the operator.

If more than one is defined on the panel, the last &CUR is processed and previous

ones are ignored. If more than one tilde (~) is defined on the panel, the first tilde is

processed and any subsequent ones are changed to a percent (%) sign.

If you specify INPUT for the NetView program, code the command line as you

would code any other input-capable field. Do not use the &CUR and tilde

definitions. The procedure that displays the panel issues the commands. See

“Issuing Commands from Command Procedures” on page 46 for information on

issuing CMD HIGH.

Using PF Keys and Subcommands with VIEW

PF keys and VIEW subcommands are treated differently with the two view

options, INPUT and NOINPUT. The following two sections explain the differences.

PANEL2

 X==X

 | |

 | |

 | PPPPPPP AAAAAAA NN NN EEEEEEEE LL 22222222 |

 | PP PP AA AA NNN NN EE LL 22 |

 | PPPPPPPP AAAAAAAAA NN NN NN EEEEEEEE LL 22222222 |

 | PP AA AA NN NNN EE LL 22 |

 | PP AA AA NN NN EEEEEEEE LLLLLLLL 22222222 |

 | |

 |--|

 | |

 | |

 | |

 | |

 | |

 X==X

Enter a command on the command line OR...

Enter BACK or press PF7 to view the previous panel.

Action==> _

 PF2= End

 PF6/PF18= Roll PF7= Previous

Figure 16. Display Panel of Component

VIEW Command

Chapter 3. Using the VIEW Command 57

Using PF Keys and Subcommands with the NOINPUT Option

When you use VIEW with the NOINPUT option, you can define your PF keys

using the PFKDEF command. The values you assign can be NetView commands,

or VIEW subcommands. The following is a list of the VIEW subcommands; some

have the same name as similar NetView commands:

Help Displays the help panel previously coded:

HELP=helppan

End Exits to the originating component.

Return

Returns to the last panel from which a selection was made.

Top Returns to the first page of a multipage panel.

Bottom

Goes to the last page of a multipage panel.

Backward

Returns to the previous page of a multipage panel.

 In addition to assigning the Backward subcommand to a PF key, you can

also enter the following command on the command line to scroll backward

a specific number of pages:

B n Scrolls backwards n number of pages or panels.

Forward

Goes to the next page of a multipage panel.

 In addition to assigning the Forward subcommand to a PF key, you can

also enter the following command on the command line to scroll forward a

specific number of pages:

F n Scrolls forward n number of pages or panels.

Entry Point

Shows the panel that the operator first saw upon entry to help.

Reference: Refer to the PFKDEF command in the IBM Tivoli NetView for

z/OS Administration Reference for more information.

Using PF Keys and Subcommands with the INPUT Option

When you use VIEW with the INPUT option, you can use settable PF keys defined

using the PFKDEF command or you can interpret PF keys in your command list.

You need to code the panel definition and parameters differently depending on the

option you select.

Using Settable PF Keys

To use settable PF keys with VIEW, complete each of the following steps:

1. In the panel definition, create a variable named CNMIMDL that has no

attribute-variable ($CNMIMDL) which makes it an input field. Define the

immediate message line by putting &CNMIMDL in column 1 of the line. Do

not put anything else on that line.

If the VIEW application has not provided a value for CNMIMDL, VIEW

searches the global dictionaries (task, then common) for a variable named

CNMIMxxx, where xxx is the application name provided when VIEW was

invoked. If this variable is not found, VIEW searches for CNMIMVIEW in the

VIEW Command

58 Customization Guide

same dictionaries. This is similar to the way keys are set for VIEW applications.

Finally, if none of these variables are present, the text from message BNH257I is

used.

2. In the panel definition, create a variable named CNMCMDL that does have an

attribute-variable ($CNMCMDL) which makes it an input field. CNMCMDL

defines the command area.

3. Optionally, create another variable named CNMDIMD to define a default

immediate message. This message is displayed by NetView whenever the

CNMIMDL message has been displayed and there are no other immediate

messages. If you do not create CNMDIMD, NetView defaults it the same way it

defaults CNMIMDL.

All these variables support attribute ($) variables.

For example, you might call VIEW with an error message in CNMIMDL and a

default message in CNMDIMD, with $CNMIMDL set to CR and $CNMDIMD set

to CG. The error message will be displayed in red, but if the user presses a

RETRIEVE key or delay-type key, for example, the red message is replaced by the

default message, in green.

The REXX command WINDOW is a good example of coding VIEW panels to set

PF keys. Enter BROWSE WINDOW to see the REXX source for this command.

Notes:

1. VIEW-input applications that do steps 1 and 2 always have their VIEWAID

variable set to ENTER after invoking VIEW, because other keys are converted

as if the user typed the command text and pressed ENTER.

2. The &CNMIMDL variable is nulled out when control is returned to the

command list from VIEW, if VIEW detected that the immediate message area

was overwritten by NetView after the VIEW panel was output (for example, by

an immediate command entered by the operator).

3. The special variables CNMIMDL and CNMDIMD are supported in

VIEW-noinput as well as VIEW-input. CNMCMDL only has special meaning in

VIEW-input.

Dynamic Update Capabilities

The VIEW command enables you to dynamically update the contents of the panel

being displayed. The updates can be controlled by:

v The calling procedure

When using EXTEND mode, if VIEW detects that a message TRAP is satisfied,

VIEW returns control to the calling procedure to allow the update of local

variable values displayed on the VIEW panel. VIEW refreshes the display with

the new values when control is returned to VIEW using the RESUME command.

v Any automation or procedure running on the same task

If the variables named on your VIEW panel are not defined by the calling

procedure, VIEW attempts to read values from task global variables. For more

information, refer to the online help for the GLOBALV command and the PIPE

VAR stage. Values of task global variables can be updated by any procedure

called on the same task (same operator ID) and VIEW immediately refreshes the

display when the procedure completes.

v Any procedure in NetView

If the variables named on your VIEW panel are not defined by the calling

procedure and do not exist as task global variables, VIEW attempts to read

VIEW Command

Chapter 3. Using the VIEW Command 59

values from common global variables. For more information, refer to the online

help for the GLOBALV command and the PIPE VAR stage. Any procedure in the

NetView program can update the values of common global variables; however,

VIEW refreshes the display only when an event (such as receipt of a message)

occurs at the task that started VIEW.

While a panel is displayed, automation from timers, messages, or alerts can drive

command procedures that update some of the variables substituted into the

displayed panel. Any processing under the OST where the panel is displayed

causes a dynamic update of the panel with new values for any variables that have

changed.

To make information on the panel easier to see, and make it easier to enter

information on the panel while a panel is dynamically updated, assign values to

attribute variables for all variables on the panel that can be changed dynamically.

This enables VIEW to send only the updated information to the screen without

rewriting the entire screen for each update.

When VIEW detects certain changes to common, task, and local variables or their

associated attribute variables, VIEW must rewrite the entire panel.

If the entire screen is redisplayed, changes typed by the operator on the screen

being redisplayed are lost. Following is a list of these changes:

v The attribute variable for a given data variable has changed to indicate that a

field has been changed from protected to unprotected or vice-versa.

v An attribute variable for a given data variable now has a valid value. It either

did not exist or it had a value that is not valid.

v An attribute variable for a given data variable now has no value or a value that

is not valid. It previously had a valid value.

v The value for a data variable has changed, and a valid attribute variable is not

associated with the data variable.

To continue processing of the VIEW command after variables used by the

displayed panel are updated, use the RESUME command.

Sample of Panel Updating

The following figures show the dynamic updates of the contents of a panel.

Figure 17 on page 61 is an example of a command list called RESDYN which is

shipped as part of sample CNMS1101. RESDYN uses the RESOURCE command

output as data to be displayed in a panel using the VIEW command. The

displayed data is updated on a time interval that you specify when calling the

command list. The default time interval is 10 seconds. Note that this example of

the VIEW issued for the RESDYN function (option 12) uses the EXTEND

parameter in order to make use of the NetView for z/OS Version 5 Release 1

extended functionality.

VIEW Command

60 Customization Guide

Figure 18 is an example of the output from the RESDYN command list.

/* -------------- Dynamic Resource Display (option 12) -------------- */

/* A demonstration of using VIEW and TRAP to dynamically update a */

/* full screen display. We use the SPILL option of pipe’s KEEP */

/* (new for V5) to create a message after the specified refresh */

/* interval. This message is TRAPped, causing VIEW to return */

/* control to this procedure WITHOUT removing the displayed panel. */

/* The ’RESUME’, below is a REINVOCATION of the original VIEW!!! */

/* */

/* Note that the first call to "fillVars" passes an extra little */

/* bit of pipe to the subroutine. The purpose is to get the first */

/* word of the second data line (STC name) for the panel. */

/* */

/* -- */

resdyn:

 interval = 10 /* refresh at 10 second intervals */

 privMsgID = ’CNMRESDYN’ /* special purpose "msgid" for trapping */

 getSTC = ’% STC:|DROP 1|TAKE 1|EDIT W1|VAR JBN’

 Call fillVars getSTC /* set local variables with data from RESOURCE */

 ’TRAP AND SUPPRESS MESSAGES’ privMsgID /* TRAP our special message */

 ’PIPE VAR privMsgID | KEEP RESDYN’ interval ’SPILL’ /* make msg later */

 ’VIEW RESDYN CNMSRESP EXTEND’

 DO WHILE (rc = 2) /* RC indicates "message trapped"? */

 ’MSGREAD’ /* just getting msg off trap queue */

 CALL fillVars

 ’PIPE VAR privMsgID | KEEP RESDYN’ interval ’SPILL’ /* make msg later */

 ’RESUME’ /* Invoke VIEW, previously suspended */

 /* NOTE: RC, at this point, is RC from VIEW, which was resumed. */

 END

 ’pipe hole | keep resdyn’ /* empty safe created above */

return

/* ----------- Obtain data for RESDYN display (option 12) ----------- */

/* Notice that the stem variable "out." is in our local variable */

/* dictionary. VIEW could always read these value; */

/* we will have an opportunity to update them while VIEW is active. */

/* --- */

fillVars:

 ARG xtraStg /* use extra first time only */

 ’PIPE (NAME RESDYN END %)’,

 ’| NETVIEW RESOURCE’,

 ’| SEPARATE DATA’, /* No use for DSI386I title line */

 ’| STC: FANOUT’, /* MAYBE need extra copies */

 ’| EDIT SKIPTO /=/ 2.* STRIPL 1 ’,

 ’| COLOR WHITE’,

 ’| $STEM OUT.’,

 xtraStg

 TM = date() time()

 $TM = ’CB HR’

return

Figure 17. Example of a REXX Command List to Update a Panel

VIEW Command

Chapter 3. Using the VIEW Command 61

Figure 19 is the source panel text that displays the previous panel (Figure 18).

VIEW manages the PF keys and the command line without the intervention of the

RESDYN command list.

Changing Colors in Browse

The template shown in Figure 20 on page 63 is used when browsing members of a

partitioned data set. Note the various applications of the color attributes shown in

Table 13 on page 39 and Table 14 on page 39. The characters %, $, ¬, and + each

assign a specific color to the screen area immediately following their positions. To

change a color area on the screen, you need only change the color attribute. You

can only change existing attribute fields; changing any other field can result in

errors when browsing.

CNMSRESP NetView Resource Utilization 5 Sep 2001 14:46:39

 TOTAL CPU PERCENTAGE = 100.00

 T510EENV CPU PERCENTAGE = 33.62

 T510EENV CPU TIME USED = 41,175.45 SEC.

 REAL STORAGE IN USE = 23360K

 PRIVATE ALLOCATED < 16M = 752K

 PRIVATE ALLOCATED > 16M = 23180K

 PRIVATE REGION < 16M = 7144K

 PRIVATE REGION > 16M = 65536K

TO SEE YOUR KEY SETTINGS, ENTER 'DISPFK'

CMD ==>

Figure 18. RESDYN Command List Output Example

*** AT2 XVAR SFD

+CNMSRESP NetView Resource Utilization + &TM

$

$

$ TOTAL CPU PERCENTAGE = &OUT.1

$ &JBN CPU PERCENTAGE = &OUT.2

$ &JBN CPU TIME USED = &OUT.3

$ REAL STORAGE IN USE = &OUT.4

$ PRIVATE ALLOCATED < 16M = &OUT.5

$ PRIVATE ALLOCATED > 16M = &OUT.6

$ PRIVATE REGION < 16M = &OUT.7

$ PRIVATE REGION > 16M = &OUT.8

$

$

$

$

$

$

$

$ $Display is updated approximately every 10 seconds.

&CNMIMDL

%CMD==>~&CUR

Figure 19. CNMSRESP Source Panel Text

VIEW Command

62 Customization Guide

/**

/* BROWSE Command Panel for displaying member data *

/**

*** WIDE OPTROW=(

%NETVIEW.BRWS ------ BROWSE &BMEMBER (&BDDNAME) --- LINE &BTOP TO &BBOT OF &BTOT

¬&BMESSAGE %&BSCL &BSC +

&BCOL $

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

Figure 20. BROWSE Command Panel Definition Showing Color Attributes (Part 1 of 2)

VIEW Command

Chapter 3. Using the VIEW Command 63

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

(&BDATALINE

%CMD==>~&BCOMMAND $

&CNMIMDL

Figure 20. BROWSE Command Panel Definition Showing Color Attributes (Part 2 of 2)

64 Customization Guide

Chapter 4. Modifying and Creating Online Help Information

The NetView program contains a help facility, which has two types of help

information.

The first type of help is view-based help, which is displayed by using the VIEW

command. The second type is window-based help, which is displayed by using the

WINDOW command.

This chapter explains how you can add, delete, or modify help information and is

arranged in the sequence you use to accomplish this. The sequence follows:

1. Locate the help source file.

2. Copy and change the source file.

3. Store the copy.

4. Display the help to test your changes.

Locating Help Source Files

Source files define the panel contents that are displayed.

Help information is contained in a separate file and is shipped as a member in a

partitioned data set (PDS). English help source files are stored in the

NETVIEW.V5R3M0.CNMPNL1 data set.

Notes:

1. Japanese help source files are stored in the NETVIEW.V5R3M0.SCNMPNL2

data set.

2. Copies of the command and message help are stored on the Web Server. If you

customize the command and message help in NetView data set members, you

may want to make the same changes to the Web Server files.

Verify that your organization has not changed the library name.

Before you create a new help source, try to locate an existing online help that is

similar to the one you want to create. Generally, when you have a help source file

displayed, the file name is in the top left corner.

For command help information, you can locate the source file you want to change

by browsing the HELPMAP. Window-based help files are prefixed with the <

character. See “HELPMAP Facility” on page 70 for more information on the

HELPMAP. Help information for groups of messages is stored as members of the

PDS, one member for each group. The member name is determined by truncating

the message ID prior to the last numeric digit. For example, help for messages

DSI001I and DSI002I is stored in member DSI00. Help for message EKGV68001I is

stored in member EKGV6800.

If a message or command help panel is currently being displayed, you can use the

SHOWDATA command to locate the source file. Figure 21 on page 66 displays the

information returned after entering SHOWDATA on the command line.

Note: In Figure 21 on page 66, the following are true:

1. The panel is located in member EUYCLIST of the CNMPNL1 data set.

© Copyright IBM Corp. 1997, 2007 65

2. The !+! listed in the response from the SHOWDATA command is

generated by special processing from the help search procedure and can

be ignored.

View-Based Help

The source file contents include the text of the displayed panel and the definition

statements associated with the panel. A definition statement includes:

v A prologue

v The help panel name

v The continuation panel name

v A list of associated help panels

To view the source file for a View-based help panel, enter:

BROWSE CNMPNL1.panelid

Where panelid is the name that is displayed in the upper-left corner of the source

for the help. For additional information, see “Creating Full-Screen Panels” on page

31.

Window-Based Help

Figure 22 on page 67 is an example of the source format of the Window-based help

information. Descriptions of each numbered field follow the figure.

 CNMPNL1.EUYCLIST HELP PIPE STAGES LINE 1 OF 41

 < Read from a PDS member <

 $STEM Read and set stemmed variables and attributes. $1

 $VAR Read and set variables and attributes $2

 BETWEEN Divide message streams into sections B2

 CASEI Compare character strings C3

 CHANGE Replace string occurrences C12

 CHOP Truncate lines after string C14

 COLLECT Create multiline messages C31

 CONSOLE Display messages in a pipeline C32

 CORRCMD Process a command in a pipeline C33

 CORRWAIT Allow asynchronous messages in a pipeline . . C34

 CONSOLE Display messages in a pipeline C59

 DROP Drop messages from a pipe D34

 ENVDATA Output environment data E15

 EXPOSE Exposes messages in a pipe E23

 FANIN Read from multiple input streams F1

 HELDMSG Place held messages in a pipeline H18

 HOLE Discard messages or judge correlation H34

 INTERPRT Build stages from data I10

 JOINCONT Joins consecutive messages J1

 CNMPNL1.EUYCLIST, for !+! PIPE,STAGES PIPE,COMMANDS STAGES

 CMD==> showdata

Figure 21. Example of Using the SHOWDATA Command to Locate Help Source Files

Modifying Online Help

66 Customization Guide

�1� Prologue

An optional section for programmer comments.

�2� Message or Command

The message or command to which the text applies. If the help information

is for a command that can be used in more than one component, the

*** EUYRET 5697-B82 (C) Copyright IBM Corp. 1997 �1�

* All Rights Reserved.

* CHANGE ACTIVITY:

*

============== REPEAT RFIND �2�

 REPEAT (BROWSE) �3�

:H2. Syntax �4�

 >>--REPEAT--><

:H2. IBM-Defined Synonyms

 +-----------------------------------+----------------------------------+

 | Command or Operand | Synonym |

 +-----------------------------------+----------------------------------+

 | REPEAT | R or RFIND |

 +-----------------------------------+----------------------------------+

:H2. Purpose of Command

 The REPEAT command reissues the last FIND command while you are browsing

 the network log or a member of a partitioned data set. Since this

 command is sensitive to the current position of the cursor, it is

 normally entered using a PF key.

 By repeatedly pressing the PF key set to REPEAT, you can find successive

 occurrences of a specified character string. After the first occurrence

 of a character string has been found, the REPEAT key will find the next

 occurrence. After the last occurrence of a character string has been

 found, the REPEAT key can be used to continue the search, wrapping

 around from the bottom line to the top line (or from the top line to the

 bottom line if the FIND command included the PREV parameter.)

============== RETURN RET

 �2�

 RETURN (BROWSE, HELP, HELPDESK, NCCF, NLDM, NPDA, STATMON, TARA, VIEW)

:H2. Syntax

 >>--RETURN--><

:H2. IBM-Defined Synonyms

 +-----------------------------------+----------------------------------+

 | Command or Operand | Synonym |

 +-----------------------------------+----------------------------------+

 | RETURN | RET (for BROWSE, HELP, HELPDESK, |

 | | STATMON, and VIEW) |

 | | |

 | | R (for NLDM, NPDA, and TARA) |

 +-----------------------------------+----------------------------------+

 Note: The command facility has no synonym for RETURN.

:H2. Purpose of Command

 The RETURN command returns you to the previous component or the last

 selection panel that you used.

 You should not issue this command from a command list.

:H2. Restrictions

 ...

Figure 22. Example of Source for Message and Command Help Information

Modifying Online Help

Chapter 4. Modifying and Creating Online Help Information 67

command name is prefixed with the component name. Command names

must be preceded by 14 equal (=) signs and a blank space.

�3� Message or Command Help Title

The title of this help source file.

�4� Tags

Information can be presented in different ways. These can include:

v :H2. is used to highlight command names.

v :XMP. and :EXMP. are used to surround examples.

v :IF DTYPE=PANEL followed by :ENDIF marks a section that is shown

when HELP presents a full-screen display.

v :IF DTYPE=MSGS followed by :ENDIF marks a section that is shown

when HELP presents a line mode display. This occurs when HELP is

called at an autotask or when full-screen displays are otherwise

unsupported.

v :LINK. is used to move from one topic to another. The :LINK. tag must

be in uppercase and begin in column one; it precedes the display line to

which it pertains. This line becomes a tab stop and is highlighted by

WINDOW. If more than one line of text is to be highlighted for linking,

the :LINK. tag must precede each line. See the example coding in

Figure 23 on page 69.

The operator makes a selection by placing the cursor on the line or by

issuing a FIND command that selects the line. Optionally, you can

designate a keyword that the operator can type to issue the command.

The keyword is enclosed in parentheses immediately following the

:LINK. tag.

v :CMD. is used to precede a command that can be executed immediately

when that line is selected. The command line can contain variable text

(for example, HELP msgno) that the operator can overlay with specific

data, then press the ENTER key to execute the command. The :CMD. tag

has an end tag, :ECMD., and must follow the line of command text. Both

:CMD., and its end tag must be in uppercase and begin in column 1.

A portion of EUYSLIST is shown in Figure 23 on page 69 to show how the

:IF DTYPE and :LINK. statements are coded.

Modifying Online Help

68 Customization Guide

Copying and Changing Help Source Files

Before you create a new help source file, try to locate an existing online help file

that is similar to the one you want to create. See “Locating Help Source Files” on

page 65.

If you find a comparable panel, copy it using a screen editor. Change the panel by

typing over the existing text or by adding text. If you cannot find a similar online

help file, use a screen editor to build a new one.

If you want to modify or create a help source file while the NetView program is

running, define your panel data set without secondary extents. Otherwise, a panel

can be filed in a new extent, requiring that you close and restart the NetView

program to use the panel.

The conventions for structuring a new panel are the same as those for modifying

an existing panel. All help source files must have a fixed-length blocked record

format and a logical record length of 80 bytes (RECFM=FB, LRECL=80), unless you

are using a fully qualified data set name listed in the HELPMAP. See “HELPMAP

Facility” on page 70 for more information. Null characters are also counted within

this 80-byte record. In addition, you might need to change a command list or

another panel that is affected by your new panel.

You can customize the HELPDESK to include topics specific to your installation.

NetView provides a template file, CNMHDSKU, that can be edited to create these

topics.

1. Add the new topics to CNMHDSKU.

2. Add the new topic identifiers to the table of contents in file CNMHDSK0.

Note: If you want to customize any of the existing HELPDESK files

(CNMHDSK1–CNMHDSK9), put the information in a separate file and use

the %INCLUDE statement. Otherwise, that information will need to be

added each release.

...
============== COLLECT

COLLECT (NLDM,PIPE)

COLLECT is associated with more than one NetView component.

:IF DTYPE=PANEL

Select To Get Information About

:LINK.(A)HELP NLDM COLLECT

 A NLDM COLLECT Use Session Monitor to collect response time data

:LINK.(B)HELP PIPE COLLECT

 B PIPE COLLECT A Pipe stage which collects messages in a pipe

:LINK.(C)HELP PIPE STEM

 C If you use the COLLECT command following a STEM command, see the

:LINK.(C)HELP PIPE STEM

 description of the COLLECT operand of the STEM command. Enter C.

:ENDIF

:IF DTYPE=MSGS

 Enter HELP NLDM COLLECT for help on the Session Monitor COLLECT command

 Enter HELP PIPE COLLECT for help on the COLLECT pipe stage

:ENDIF ...

Figure 23. Example of Using :IF DTYPE= and :LINK.

Modifying Online Help

Chapter 4. Modifying and Creating Online Help Information 69

After creating or modifying a help file, store it in a data set concatenated to

DDNAME CNMPNL1. As an alternative, you can also modify the panel

with an SMP USERMOD. See “Storing Help Source Files” for more

information.

Storing Help Source Files

Ensure your panel names do not use the same prefixes used by NetView-supplied

panel names.

Store all help source files that you create or modify. Two methods for storing help

files follow:

v Concatenate the user partitioned data set that contains the modified help file to

the CNMPNL1 DD statement in the NetView startup procedure before the data

set NETVIEW.V5R3M0.CNMPNL1. If the Support Center modifies the panel,

those changes will not be added to your help file.

v Include your modified help file into a System Modification Program (SMP)

USERMOD and apply the USERMOD so that SMP stores the modified panel in

NETVIEW.V5R3M0.CNMPNL1. SMP automatically notifies you of any future

changes that the Support Center makes to the panel you modified. For more

information on how to use an SMP USERMOD, refer to the System Modification

Program library.

Notes:

1. The default data set for the Japanese version of the product is

NETVIEW.V5R3M0.SCNMPNL2.

2. English help source files are stored in the NETVIEW.V5R3M0.CNMPNL1 data

set. Verify that your organization has not changed the library name.

HELPMAP Facility

The HELP command scans the HELPMAP for the required command help member

name using the arguments as search targets. HELP uses the arguments in the

following manner:

v With no arguments

When you enter HELP without supplying any arguments, you get

component-level HELP for the component you are in.

If the target arguments are not found in the table, HELP searches for a pair of

parentheses () and uses the associated panel name.

v With one argument

When one argument is supplied, HELP attempts to resolve the argument as a

command synonym, if possible.

v With two or three arguments

When two or three arguments are supplied, the search target is constructed by

concatenating the arguments with commas. For example:

ONE,TWO,THREE

HELPMAPU is a specific HELPMAP for user-defined help files created for

commands. A %INCLUDE statement contained in HELPMAP embeds HELPMAPU

that provides the mapping for those help files created by the user.

Note: Do not map user-defined help files to HELPMAP. These changes interfere

when IBM applies maintenance to HELPMAP.

Modifying Online Help

70 Customization Guide

A portion of CNMHELPF is shown in Figure 24 to show how the help names are

listed. Those that are prefixed with the < character are window-based help files;

others are view-based help files.

 You can add fully qualified data set names within single quotes to the HELPMAP.

See the following example as a guide:

< 'USER.CNMPNL1(MYCMDHLP)' MYCOMAND

Displaying New Help Panels

After you have created a new help panel, use the HELP command to view the new

panel, and any associated commands or panels, to ensure that they display

properly.

* 5697-B82 (C) COPYRIGHT IBM CORPORATION 1997 *

* ALL RIGHTS RESERVED. *

* NAME(CNMHELPF) SAMPLE(CNMHELPF) RELATED-TO(HELPMAP) *

* DESCRIPTION: NETVIEW HELP MAPPINGS FOR *

* FULL BASE FUNCTION. *

* *

CNMKNEEW ()

<EUYACQ ACQ

<EUYACT ACT

<EUYACION ACTION NPDA,ACTION

.

.

.

<EUYMENU MENU NLDM,MENU NPDA,MENU TARA,MENU

<EUYMEAGE MESSAGE

<EUYMONIT MONIT STATMON,MONIT

<EUYMOOFF MONOFF STATMON,MONOFF

<EUYMONON MONON STATMON,MONON

<EUYMRENT MRECENT MR NPDA,MRECENT NPDA,MR

<EUYMSG MSG

<EUYSLIST MVS

<EUYMVS NCCF,MVS COMMAND,MVS

<EUYSTART MVS,START

CNMKNCCF NCCF DSINCCF

.

.

.

Figure 24. Example of the HELPMAP

Modifying Online Help

Chapter 4. Modifying and Creating Online Help Information 71

72 Customization Guide

Chapter 5. Customizing Session Monitor Sense Descriptions

NetView provides help for VTAM sense codes through the session monitor SENSE

command. You can request help for either 2-byte or 4-byte sense codes. The

information used to present explanations for the sense codes is stored as a set of

members in the DSIPARM data set. You can customize these members or include

additional members to include help for sense codes that have additional meaning

for a specific application.

Session Monitor Sense Codes

The session monitor sense code descriptions are stored as DSIPARM members

named CNMBnnn, where nnn is the first three hexadecimal digits of the 2-byte and

4-byte sense codes described in the member. For example, help for sense codes

08B2 and 08B60001 is stored in DSIPARM member CNMB08B. The CNMB08B

member shipped with the NetView product is shown in Figure 25 on page 74.

The general conventions are:

v The descriptions are first grouped by the leftmost two bytes of the sense code,

using a separator of $$$KEY xxxx???? where xxxx is the hexadecimal value of

the leftmost two bytes. The description of the 2-byte sense code xxxx (or 4-byte

sense code xxxx0000) follows this separator.

v Extended sense code descriptions, identified by the rightmost two bytes of a

4-byte sense code, are grouped using a separator of $nnnn where nnnn is the

hexadecimal value of the rightmost two bytes. The extended description follows

this separator.

v Text descriptions must be contained in columns 1–57 of the DSIPARM member.

This text is not DBCS-enabled.

Note: Any modifications you make to existing DSIPARM CNMBxxx members may

be replaced by maintenance or another release of the NetView product. You

can update the comments at the beginning of the DSIPARM CNMBxxx

members to document your changes, and store any members you create or

modify in a data set concatenated before the NetView-supplied DSIPARM

data set. This helps keep your modifications from being overlaid by

subsequent maintenance or product changes.

© Copyright IBM Corp. 1997, 2007 73

Examples

Following are some examples of adding and modifying sense code description

members in DSIPARM:

v To add additional help for sense code 08B2 or 08B20000, change the

NetView-supplied help as follows:

* 5697-B82 (C) COPYRIGHT IBM CORP. 1986, 1997 *

* DESCRIPTION: SAMPLE -- SENSE CODES *

* CNMB08B CHANGED ACTIVITY: *

* CHANGE CODE DATE DESCRIPTION *

* ----------- -------- --*

$$$KEY 08B2????

Data transmission failure: the data transmission between

an application program in an SNA MS entry point and an

application program in a subentry point was incomplete,

causing abnormal termination of the function. Bytes 2

and 3 following the sense code contain sense code

specific information.

$0000

No specific code applies.

$0001

A time-out has occurred while waiting for transmission of

data between the two application programs. For example,

a service processor has timed out while waiting to

receive data from the main processor.

$0002

A time-out has occurred while waiting for transmission of

data between two applications.

$$$KEY 08B5????

Network Node Server Not Required: Sent by an APPN end

node control point to a network node control point (1) to

deactivate CP-CP sessions with the NNCP, or (2) to reject

a CP-CP session BIND from the NNCP. The end node no

longer requires network node services from the receiver.

Note: This sense data value is carried within the X’35’

control vector on an UNBIND(Type = X’01’) for case (1)

above, or on an UNBIND(Type = X’FE’) for case (2).

VTAM Hint: A possible cause of this error is that the

Network Node Server for the CP-CP session attempt is not

in the Network Node Server List.

$$$KEY 08B6????

CP-CP Sessions Not Supported: Sent by a network node

control point to reject a CP-CP session BIND from another

APPN control point; support for CP-CP sessions on that TG

was removed since the time when the TG was first

activated.

Note: This sense data value is carried within the X’35’

control vector on an UNBIND(Type = X’01’). Bytes 2 and

3 following the sense code contain sense-code-specific

information.

$0000

No specific code applies.

$0001

During link activation on a switched link, it

was discovered that the partner node does not

support CP-CP sessions on this TG.

Figure 25. CNMB08B Sense Code Help

Customizing Session Monitor Sense Descriptions

74 Customization Guide

$$$KEY 08B2????

 Data transmission failure: the data transmission between

 an application program in an SNA MS entry point and an

 application program in a subentry point was incomplete,

 causing abnormal termination of the function. Bytes 2

 and 3 following the sense code contain sense code

 specific information.

 The SNA MS entry points currently defined are SYSTEM1

 and SYSTEM2.

Note the two lines of help information added for this installation-specific sense

code.

v To add help for a new sense code 08B3 or 08B30000, add the following

information immediately after the NetView-supplied information for sense code

08B2. For example:

 $$$KEY 08B3????

 This sense code is generated by application XYZ when a

 failure occurs between components of the application.

Note the two lines of help information added for this installation-specific sense

code.

v To add help for a new sense code 08B60002, add the following information

immediately after the NetView-supplied information for sense code 08B60001.

For example:

 $0002

 During link activation on a switched link, it

 was discovered that the partner node does not

 permit sessions with this partner.

Note the three lines of help information added for this installation-specific sense

code.

v To add help for a new sense code 08C1xxxx, create a new member in DSIPARM

named CNMB08C, and include the following statements:

 $$$KEY 08C1????

 This sense code is generated by application ABC when a

 failure occurs in a component of the application.

 The third and fourth bytes of the sense code identify

 the failing component ID.

Note the four lines of help information added for this installation-specific sense

code.

Customizing Session Monitor Sense Descriptions

Chapter 5. Customizing Session Monitor Sense Descriptions 75

Customizing Session Monitor Sense Descriptions

76 Customization Guide

Chapter 6. Customizing Hardware Monitor Displayed Data

This chapter describes how to modify the presentation of generic and nongeneric

alerts. In prior releases of NetView, Recommended Action panels, Event Detail

panels, and alert messages were stored at the host. Each nongeneric alert had a

unique set of panels and messages. Many of these remain in the current release of

NetView. With generic alerts, generic alert code points are used to dynamically

build the hardware monitor panels.

This chapter describes how to do the following:

v Modify the text of nongeneric Recommended Action and Event Detail panels

v Modify nongeneric alert messages

v Overlay recommended action numbers from a generic alert

v Control the use of color and highlighting for hardware monitor panels

v Include user-defined errors, such as creating and modifying generic code points

or adding resource types to the hardware monitor

Note: Color maps for hardware monitor help panels and command description

panels are available only in prior releases of NetView.

If your panels or alert messages have been translated into a language that requires

double-byte characters, take care to preserve the integrity of the double-byte

character set (DBCS) strings.

Modifying Hardware Monitor Nongeneric Panels

Recommended Action panels and Event Detail panels are defined for event

conditions that are not based on generic alert records. If several event conditions

use the same Recommended Action panel or Event Detail panel, the panel is

physically defined under a single name, the actual panel name. Any other name

under which the actual panel can be displayed is the panel alias. Determining

whether the panel name is an actual name or an alias is the first step in modifying

panel text.

You can make changes to the panel text, and these changes are reflected in all its

aliases. You can also make changes to a panel alias, resulting in the creation of a

new panel under the former alias name.

Determining a Panel Name

To determine a panel name and whether it is a panel name or an alias, you must

know the event associated with the text you want to change and then identify a

resource for which the event is logged. Use the following steps as a guide to help

you determine the type of name:

1. To identify a resource, display the Alerts-Static, Alerts-History, or Most Recent

Events panel.

2. Enter sel# C, where sel# is the selection number on the panel of the event

associated with the text you want to change. Message BNJ962I displays a

5-digit code associated with the event. If message BNJ378I is displayed, the

event is generic and stored panels are not associated with the event.

If you receive a product ID and alert ID rather than a 5-digit code, the

associated record is a generic alert. Generic alerts do not have unique prestored

© Copyright IBM Corp. 1997, 2007 77

panels in the hardware monitor. See “Using NMVT Support for User-Written

Programming” on page 92 for more information on generic alerts.

3. Examine the 5-digit code, xxxyy, that NetView returns. The variables are

described as follows:

xxx Is the NetView-designated product code, or block ID, for the resource.

yy Is an individual panel identifier.
4. Determine which panel contains the text you want to change, as follows:

v For a Recommended Action panel, the panel name (or panel alias) is

BNIxxxyy, where xxx and yy are the codes you identified in step 3.

v For an Event Detail panel, the panel name (or panel alias) is BNKxxxyy,

where xxx and yy are the codes you identified in step 3.

v Determine whether BNIxxxyy or BNKxxxyy is an actual or alias panel name:

– Use an editor such as ISPF/PDF to examine the directory listing of panel

names. This listing is in the NetView-provided partitioned data set (PDS)

named NETVIEW.V5R3M0.BNJPNL1. The word alias is displayed to the

right of panel names that are aliases.
v See the appropriate section of this book for the action you want to perform:

“Changing Panel Text” on page 80, “Changing from Alias to Actual” on page

80, “Deleting an Actual or Alias” on page 81, or “Adding an Actual or Alias”

on page 81.

Figure 26 is an example of a BNJBLKID table.

Customizing Hardware Monitor Displayed Data

78 Customization Guide

Figure 27 on page 80 is an example of a BNJALxxx table.

TITLE ’BNJBLKID: LIST OF ALIAS TABLES BY BLOCK ID’

BNJBLKID CSECT

 EJECT

 DS 0F

NUMENT DC AL4((TABEND-TABSTART)/LENG) NO. OF ENTRIES

TABSTART EQU *

 DC CL3’FED’

 DC CL3’FEE’

 DC CL3’FEF’

 DC CL3’FE1’

 DC CL3’FE2’

 DC CL3’FE3’

 DC CL3’FE4’

 DC CL3’FFD’

 DC CL3’FFE’

 DC CL3’FFF’

 DC CL3’FF2’

 DC CL3’FF5’

 DC CL3’FF6’

 DC CL3’FF7’

 DC CL3’FF8’

 DC CL3’FF9’

 DC CL3’GA1’

 DC CL3’GB1’

 DC CL3’GC1’

 DC CL3’003’

 DC CL3’005’

 DC CL3’017’

 DC CL3’02D’

 DC CL3’02F’

 DC CL3’021’

 DC CL3’022’

 DC CL3’023’

 DC CL3’03E’

 DC CL3’036’

 DC CL3’037’

 DC CL3’038’

 DC CL3’04A’

 DC CL3’04B’

 DC CL3’04C’

 DC CL3’04D’

 DC CL3’04E’

 DC CL3’04F’

 DC CL3’043’

 DC CL3’044’

 DC CL3’047’

 DC CL3’048’

 DC CL3’049’

 DC CL3’057’

 DC CL3’47C’

TABEND EQU *

LENG EQU 3 ENTRY BYTE LENGTH

 END BNJBLKID

Figure 26. Sample BNJBLKID Table

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 79

Changing Panel Text

If BNIxxxyy or BNKxxxyy is an actual panel name (not an alias), follow these steps

to change the panel wording. BNIxxxyy panels must contain exactly 14

noncomment lines; BNKxxxyy panels must contain exactly seven noncomment

lines. Comment lines contain an asterisk (*) in column 1.

1. Use an editor, such as ISPF/PDF, to edit the PDS member containing the panel.

The PDS name is NETVIEW.V5R3M0.BNJPNL1 (unless it is changed during

installation), and the member name is the same as the panel name.

2. Save the changed member.

The changes apply to all event conditions that use the panel or any of its aliases.

Changing from Alias to Actual

If you want to make a panel that now appears under an alias into an actual panel,

follow these steps:

1. Use an editor, such as ISPF/PDF, to edit the PDS member containing the panel

alias. The PDS name is NETVIEW.V5R3M0.BNJPNL1 (unless it is changed

during installation), and the alias member name is the same as the panel name.

 TITLE ’BNJAL036: ALIAS TABLE FOR BLOCKID 036’

BNJAL036 CSECT

 EJECT

 DS 0F

NUMENT DC AL4((TABEND-TABSTART)/LENG) NO. OF PAIRS

* REAL NAME ALIAS NAME

TABSTART EQU *

 DC CL8’BNI03609’,CL8’BNI0366D’

 DC CL8’BNI03608’,CL8’BNI0366C’

 DC CL8’BNI03607’,CL8’BNI0366B’

 DC CL8’BNI03606’,CL8’BNI0366A’

 DC CL8’BNI03605’,CL8’BNI03669’

 DC CL8’BNI03605’,CL8’BNI03671’

 DC CL8’BNI03605’,CL8’BNI0360D’

 DC CL8’BNI03604’,CL8’BNI03668’

 DC CL8’BNI03604’,CL8’BNI03670’

 DC CL8’BNI03604’,CL8’BNI0360C’

 DC CL8’BNI03603’,CL8’BNI03667’

 DC CL8’BNI03602’,CL8’BNI03666’

 DC CL8’BNI03601’,CL8’BNI03665’

 DC CL8’BNI0360B’,CL8’BNI0366F’

 DC CL8’BNI0360A’,CL8’BNI0366E’

 DC CL8’BNK03609’,CL8’BNK0366D’

 DC CL8’BNK03608’,CL8’BNK0366C’

 DC CL8’BNK03607’,CL8’BNK0366B’

 DC CL8’BNK03606’,CL8’BNK0366A’

 DC CL8’BNK03605’,CL8’BNK03669’

 DC CL8’BNK03604’,CL8’BNK03668’

 DC CL8’BNK03603’,CL8’BNK03667’

 DC CL8’BNK03602’,CL8’BNK03666’

 DC CL8’BNK03601’,CL8’BNK03665’

 DC CL8’BNK0360D’,CL8’BNK03671’

 DC CL8’BNK0360C’,CL8’BNK03670’

 DC CL8’BNK0360B’,CL8’BNK0366F’

 DC CL8’BNK0360A’,CL8’BNK0366E’

TABEND EQU *

LENG EQU 16 ENTRY PAIR BYTE LENGTH

 END BNJAL036

Figure 27. Sample BNJALxxx Table

Customizing Hardware Monitor Displayed Data

80 Customization Guide

2. Save the changed member. TSO converts the panel alias into an actual panel.

A new actual panel is created under the name that was formerly the alias.

Reference: For more information about z/OS utilities and JCL, refer to the z/OS

library.

Deleting an Actual or Alias

To delete an actual or alias panel name, do one of the following:

v Delete the PDS member containing the actual or alias panel name. The PDS

name is NETVIEW.V5R3M0.BNJPNL1 (unless it is changed during installation),

and the member name is the same as the panel name.

v Use the utility IEHPROGM. For example, to delete aliases BNK04B2E and

BNK04B2F using this utility, you could code the following:

In this example, device_type is the device type, vsnum is the volume serial

number on which the data set resides, and panel_dsname is the name of the data

set containing the panels.

Reference: For more information on z/OS utilities and JCL, refer to the z/OS

library.

Adding an Actual or Alias

If you want BNIxxxyy or BNKxxxyy to be a new (or replacement) panel name or

alias, follow these steps:

v Enter a new panel using an editor, such as ISPF/PDF, and copy an existing

panel that is similar to the desired panel. Then, change the copied panel.

v Add the new panel name or an alias, using the utility IEBUPDTE.

For example, to add BNK04B2E as an alias of BNK04B2A using IEBUPDTE, code

the following:

//DELMEBR2 JOB MSGLEVEL=(1,1)

//STEP1 EXEC PGM=IEHPROGM

//SYSPRINT DD SYSOUT=A

//DS1 DD VOL=SER=vsnum,DISP=SHR,UNIT=device_type

//SYSIN DD *

 SCRATCH VOL=device_type=vsnum,DSNAME=panel_dsname,

 MEMBER=BNK04B2E

//STEP2 EXEC PGM=IEHPROGM

//SYSPRINT DD SYSOUT=A

//DS1 DD VOL=SER=vsnum,DISP=SHR,UNIT=device_type

//SYSIN DD *

 SCRATCH VOL=device_type=vsnum,DSNAME=panel_dsname,

 MEMBER=BNK04B2F

/*

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 81

In this sample, panel_dsname is the name of the data set where the panel is stored,

and vsnum is the volume serial number on which the data set resides. Although

the sample defines only one new alias, up to 15 aliases are valid.

Reference: For more information on z/OS utilities and JCL, refer to the z/OS

library.

Nongeneric Alert Messages

To change the Event Description: Probable Cause text of any selection on an

Alerts-Static, Alerts-History, Alerts-Dynamic, Event Detail, or Most Recent Events

panel that is not associated with generic alerts, follow these steps:

1. Determine the event of the associated text and identify a resource against

which the event is logged.

2. For the resource identified in Step 1, display the Alerts-Static, Alerts-History,

Alerts-Dynamic, Event Detail, or Most Recent Events panel.

3. Enter sel# C, where sel# is the selection number of the event associated with

the text you want to change. Message BNJ962I displays a 5-digit code

associated with the event. If message BNJ378I is displayed, the event is generic.

If you receive a product ID and an alert ID rather than a 5-digit code, the

associated record is a generic alert. Generic alerts do not have unique prestored

Event Description: Probable Cause text messages in the hardware monitor. See

“Using NMVT Support for User-Written Programming” on page 92 for more

information on generic alerts.

4. Examine the following 5-digit code, xxxyy, that NetView returns.

xxx Is the NetView-designated product code, or block ID, for the resource

yy Is an individual hexadecimal panel identifier
5. Use an editor such as ISPF/PDF to retrieve and edit the CSECT that contains

the text you want to change. The name of the CSECT is BNJVMxxx (PDS

member in NETVIEW.V5R3.BNJSRC1), where xxx is the block ID you identified

in Step 4.

//PANELS JOB MSGLEVEL=1,MSGCLASS=A

//UPDATE1 EXEC PGM=IEBUPDTE,PARM=NEW

//SYSPRINT DD SYSOUT=A

//SYSUT2 DD DSN=panel_dsname,DISP=SHR,UNIT=device_type,

// VOL=SER=vsnum

//SYSIN DD *

./ ADD NAME=BNK04B2A

 DETAIL DESCRIPTION: THE ERROR ANALYSIS MICROCODE

 HAS DETECTED AN INVALID ERROR LOG ENTRY.

 LOG ENTRY 0-3 4-7 8-11

**

 .

 .

 .

*

*

*

***************LAST LINE OF PDS MEMBER************

./ ALIAS NAME=BNK04B2E

/*

Customizing Hardware Monitor Displayed Data

82 Customization Guide

6. Locate the message text within BNJVMxxx. The message number for this text is

the decimal equivalent of yy, where yy is the hexadecimal identifier you

determined in Step 4.

7. Change the assembler language macro DSIMDS.

Reference: For the syntax of DSIMDS, refer to IBM Tivoli NetView for

z/OS Programming: Assembler for the text you want to change.

8. Save the changed CSECT.

9. Reassemble the CSECT, and link-edit the CSECT into the load module of the

same name.

Using the ACTION Command List

You can use the ACTION command list to get more information on a

recommended action that is displayed in the hardware monitor. See Chapter 4,

“Modifying and Creating Online Help Information,” on page 65 for information on

how to modify the Action Help panels displayed by the ACTION command list.

Dnnn, Ennn, and Innn are recommended action numbers found on the

Recommended Action panels. Rnnn numbers are actions found on the resolution

action panel. The following describes what the ACTION command list displays for

recommended action numbers:

ACTION Dnnn

Displays a NetView-provided, detailed description of a recommended

action.

ACTION Ennn

Displays a description of a recommended action, created by your system

programmer, for a user-defined generic alert action.

ACTION Innn

Displays a description of a recommended action created for a

NetView-provided generic alert action.

ACTION Rnnn

Displays a description of an actual action created for a NetView-provided

resolution action.

Overlaying Recommended Action Numbers

Because details of a particular generic alert Recommended Action can vary

depending on the sending product, Action Help panels cannot be provided for all

possible generic actions. Therefore, on NetView Action Help panels built for

generic alerts, each recommended action is preceded by an I-number

(Tivoli-supplied action) or an E-number (user-supplied action).

On Recommended Action panels of the hardware monitor, each recommended

action is identified with a special action number. Figure 28 shows a sample

Recommended Action panel with three recommended actions (D225, D001, and

D238).

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 83

I-number and E-number actions do not have associated NetView-supplied panels.

However, the NetView program allows users to overlay I-numbers and E-numbers

with action numbers, to create panels that are specific to the sending product.

You can do this by modifying either table BNJDNUMB, which correlates a Product

Set ID with action numbers, or table BNJDNAME, which correlates a Product

Common Name with action numbers. BNJDNUMB is searched before BNJDNAME.

Modify table BNJDNUMB or BNJDNAME in NETVIEW.V5R3M0.BNJPNL2 and

create BNJwwwww PDS members.

Modifying BNJDNUMB, BNJDNAME, and BNJwwwww

This section uses the names BNJDNUMB and BNJwwwww to indicate a PDS

member.

BNJDNUMB

BNJDNUMB correlates a product-set identification (PSID) with a unique file or

PDS member (BNJwwwww) that contains the action numbers to use for this

product. To modify BNJDNUMB, use an editor such as ISPF/PDF.

Note: If the NetView program receives a generic alert whose PSID does not exist

in BNJDNUMB and whose product common name does not exist in

BNJDNAME, the default I-number or E-number is not modified.

The format for BNJDNUMB follows:

xxx

yyyyyyyyy BNJwwwww comment

 . . .

 . . .

 . . .

Where:

 N E T V I E W SESSION DOMAIN: CNM01 OPER1 05/17/95 14:40:53

 NPDA-45A * RECOMMENDED ACTION FOR SELECTED EVENT * PAGE 1 OF 2

 CNM01 CENTRAL LN08PTP PU32768

 +--------+ +--------+

 DOMAIN | COMC |----LINE----| CTRL |

 +--------+ +--------+

 USER CAUSED - LSL 2 REMOTE DSU/CSU IN TEST MODE

 LSL 2 REMOTE DSU/CSU IN CONFIGURATION MODE

 LINE SWITCHED TO INCORRECT POSITION

 ACTIONS - D001 - CORRECT THEN RETRY

 INSTALL CAUSED - LSL 2 REMOTE DSU/CSU ADDRESS INCORRECT

 LSL 2 DSU/CSU’S SPEED MISMATCH

 PHYSICAL LINE CONNECTIONS

 ACTIONS - D225 - CORRECT ADDRESS FROM DSU/CSU CONTROL PANEL

 D001 - CORRECT THEN RETRY

 D238 - PERFORM REMOTE DSU/CSU PROBLEM DETERMINATION

 ENTER ST (MOST RECENT STATISTICS), DM (DETAIL MENU), OR D (EVENT DETAIL)

 ???

CMD==>

Figure 28. Recommended Action Panel for Selected Event

Customizing Hardware Monitor Displayed Data

84 Customization Guide

xxx Specifies the number of entries in BNJDNUMB. This number must begin in

column 1 and should be three characters long with leading zeros, if

necessary.

yyyyyyyyy

Specifies up to nine characters representing the PSID. This entry must

begin in column 1.

BNJwwwww

Is the name of the PDS member beginning in column 11, that contains

generic alert recommended action code points and associated action

numbers. Names such as BNJDNUM2, BNJDNUM3, for example, are

recommended. However, you can use any unique name. The name

BNJDNUM1 is already used for generic alerts produced by the hardware

monitor.

Entries in BNJDNUMB must be in ascending order. Comment lines contain an

asterisk (*) in column 1.

Determining the PSID: Because the sending product can be either a hardware

product or a software product, the PSID is defined as follows:

v For hardware products, the PSID is defined with the four numeric characters

identifying the machine type found in the X'00' subfield, Hardware Product

Identifier (located in the first X'11' subvector of the first X'10' subvector in the

generic alert).

v For software products, the PSID is defined with the nine uppercase

alphanumeric characters of the serviceable component identifier in the X'02'

subfield, software product serviceable component identifier (located in the first

X'11' subvector of the first X'10' subvector in the generic alert).

Note: If the X'02' subvector does not exist, use the seven uppercase

alphanumeric characters of the program product number in the X'08'

subvector, software product program number (located in the first X'11'

subvector of the first X'10' subvector in the generic alert).

Two methods are available to determine the PSID of a generic alert that is logged

to the hardware monitor database:

v Select sel# C from Alerts-Static, Alerts-History, or Most Recent Events panels to

display a message containing the PSID.

v Make a selection from the Event Detail menu to display page 1 of the PSID

panel. This panel displays the sending PSID.

BNJDNAME

BNJDNAME correlates a product common name with a unique file or PDS

(BNJwwwww) that contains the action numbers to use for this product. To modify

BNJDNAME, use an editor such as ISPF/PDF.

The format for BNJDNAME follows:

xxx

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy BNJwwwww comment

Where:

xxx Specifies the number of entries in BNJDNAME. This number must begin in

column 1 and must be three characters long with leading zeros, if

necessary.

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 85

yyy...y Specifies up to 30 characters representing the software product common

name or up to 15 characters specifying the hardware common name.

BNJwwwww

Is the name of the PDS member beginning in column 32, that contains

generic alert recommended action code points and associated action

numbers. Names such as BNJDNUM2, BNJDNUM3, and so forth, are

recommended. However, you can use any unique name. The name

BNJDNUM1 is already used for generic alerts produced by the hardware

monitor.

comment

Comments must start in column 45.

NetView provides the following data in this PDS member:

Determining the Product Common Name: Because the sending product can be

either hardware or software, the product common name is defined as follows:

v For hardware products, the hardware common name is defined by the EBCDIC

characters found in the X'0E' subfield, Hardware Product Common Name

(located in the first X'11' subvector of the first X'10' subvector in the generic

alert).

v For software products, the software common name is defined by the EBCDIC

characters found in the X'06' subfield, Software Product Common Name (located

in the first X'11' subvector of the first X'10' subvector in the generic alert).

To determine the product common name of a generic alert that is logged to the

hardware monitor database, make selection 2 from the Event Detail menu. This

selection will display the common name (hardware or software) of the sending

product.

BNJwwwww

Each BNJwwwww member contains generic alert recommended action code points

and associated action numbers. To create the BNJwwwww files or members

specified in table BNJDNUMB, use an editor such as ISPF/PDF. Each BNJwwwww

PDS member should be stored in the first data set in the concatenation string for

the DD statement BNJPNL2. This DD statement is in the NetView startup

procedure.

Avoid defining your panel data set with secondary extents when modifying or

creating a panel while the NetView program is running. If a secondary extent is

defined while NetView is running, a secondary extent failure can occur causing

error recovery and loss of a single instance of a request. If a second attempt is

made to execute the request, error recovery might succeed in the execution of the

request. However, recycling NetView would be required for a full data set.

The format for BNJwwwww follows:

xxxx yyyyyyyy dnum

 . . .

 . . .

 . . .

Where:

001

NETVIEW BNJDNUM1 NETVIEW PRODUCT

Figure 29. Sample BNJDNAME Table

Customizing Hardware Monitor Displayed Data

86 Customization Guide

xxxx Is the 4-character generic alert recommended action code point (EBCDIC

version of the recommended action code point as defined by the generic

alert architecture). This field must begin in column 1.

yyyyyyyy

Is the 8-character alert ID number (EBCDIC version of the alert ID number

as defined in the X'92' subvector architecture). This field is optional. If

present, it must begin in column 11.

dnum Is the 4-character unique action number. This field begins in column 21.

Action numbers can be any combination of four EBCDIC characters. The

limiting factor of the action number is the ability of the ACTION command

list to use these four characters and display the associated panel.

Entries in each BNJwwwww file or member must be in ascending hexadecimal

order. If a non-hexadecimal number is used, it is skipped.

The BNJwwwww file or member specified in BNJDNUMB or BNJDNAME is

searched serially until a match is found or the end of the file is reached. After the

first * is found in column 1, the serial searching stops.

You can place blanks in the alert ID field, along with specific alert IDs, for a

particular action code point.

Figure 30 shows a sample BNJwwwww user-defined table.

 For alert D2556B79, the code point 1002 uses D777 as its action number. For alert

93987791, code point 1002 uses D890 as its action number. For all other alerts from

this sending product, code point 1002 uses D562 as its action number.

Changing Color and Highlighting for Hardware Monitor Panels

For the hardware monitor displays, you can alter the color, highlighting, and

intensity of the display’s text. You can also enable the display to produce an

audible alarm. Consider the needs of the display users before you modify these

four attributes as assigned by the NetView program.

Note: Changing the length of any attribute, row placement, or column placement

will yield unpredictable results.

For any string of display text that is preceded by a blank, you can modify up to

four attributes as follows:

Color Text is red, yellow, blue, white, green, turquoise, or pink.

Highlighting Text is underscored, blinking, or in reverse video.

Intensity Text is more intense (monochrome terminals only).

Alarm Text causes an audible alarm at the user’s terminal.

You can change these attributes for specific displays or for all displays. For

example, you can select a single color for prompt lines on all displays.

1002 D562

1002 93987791 D890

1002 D2556B79 D777

Figure 30. Sample BNJwwwww User-Defined Table

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 87

The procedure for modifying these attributes begins with a color map. A color map

is a table that embeds characters, representing the various attributes, in a color

buffer. These characters in the color buffer control the appearance of the text.

The automation table can also be used to set or change the color and highlighting

of specific alerts for hardware monitor display.

Reference: For more information, refer to theIBM Tivoli NetView for

z/OS Automation Guide.

Selecting the Color Map

The first step in modifying a hardware monitor display is to determine which color

map controls the display you want to change. Appendix A, “Color Maps for

Hardware Monitor Panels,” on page 189, contains a matrix of the panel name,

panel number, and color map for hardware monitor panels.

After you identify the color map you need, edit the map using an editor such as

ISPF/PDF. The color maps are contained in the PDS named

NETVIEW.V5R3M0.BNJPNL2 (unless the name is changed during installation). The

member name is the color map name.

Note: If you want a particular attribute to apply to the same portion of each panel,

modify the color map BNJOVERW, which overwrites all other panel-specific

color maps. Be sure to test the results of BNJOVERW on each panel before

putting it into your production system. This map can produce unexpected

results.

Modifying the Color Map

After you select the color map, you can modify it. A color map consists of a series

of lines of data, called map elements. The top line of a color map is always the

number of subsequent map elements. Map elements begin in column 1, and are

paired with comments that begin in column 41.

Each map element specifies, for a particular display row, the attribute, the

attribute’s placement in the row, and the length in characters. Each item in the map

is followed by a comma, except for the last one, which is followed by a period.

Note: Changing any attribute’s length, row placement, or column placement can

yield unpredictable results.

Figure 31 on page 89 shows a sample color map. Explanations of the numerical

references follow on pages 89–90.

Customizing Hardware Monitor Displayed Data

88 Customization Guide

�1� The first item in the color map represents the number of subsequent lines of

data, or map elements. A map can have any number of map elements. The sample

map has 13 map elements.

�2�, �3�, and �4� describe the three types of map elements as follows:

�2� This type of map element contains attribute information in the following

format:

v The first item is the number of attributes in the map element. This can be a

value from 1 to 4.. A map element might have only one set of attributes, for

example, pink color, or any combination of attributes, such as pink color and

underscoring. The sample map element has one attribute, the color blue (BLU).

v The second item is the number of the display row that reflects the attribute. In

the sample, the attribute is to appear in row 1.

v The third item is the number of the display column that contains the attribute

character. In the sample, the attribute character is to be placed in column 1.

Consequently, the displayed text will begin in column 2.

Note: Be sure that the display text you want to modify is preceded by a blank

space. Otherwise, the character representing the attribute in the color

buffer overwrites some of the display text, and some characters are

replaced with blanks. For example, in the following string you cannot

make the colon a different color from the text:

EVENT DESCRIPTION:PROBABLE CAUSE

v The fourth item is the maximum character length of the attribute. In the sample,

the specified attribute covers 79 characters on the display, or columns 2–80.

v The last item is the attribute or sequence of several attributes. In the sample, the

color blue is the specified attribute. You can specify up to four attributes, but

only one from each category. If you want multiple attributes to apply to the

same character or string, you must specify the attributes for each category in this

order:

1. Alarm: ALM produces an audible alarm.

2. Intensity:

– HIG intensifies the color.

– NOH returns the color to normal intensity.
3. Highlighting:

– UND underlines the character or string.

– BLI causes the character or string to blink.
4. Color:

13,�1� NUMBER OF ELEMENTS IN TABLE

1,1,1,79,BLU,�2� NETVIEW HEADER

1,2,1,14,BLU, SCRN ID

2,2,16,64,HIG,WHI, SCRN TITLE

1,3,1,7,BLU, DOMAIN

1,3,9,71,TUR,

1,5,1,79,BLU, HEADING

99,SIZE-0-7,2,�3� REPETITION

2,6,1,4,HIG,WHI, SEL #

1,6,6,74,TUR, DATA

1,SIZE-4,1,50,BLU,�4� PROMPT LINE

2,SIZE-4,52,1,HIG,WHI, PROMPT LINE

1,SIZE-4,54,26,BLU, PROMPT LINE

1,SIZE-3,1,79,BLU. PROMPT LINE

Figure 31. Sample Color Map

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 89

– RED produces red.

– YEL produces yellow.

– BLU produces blue.

– WHI produces white.

– GRE produces green.

– TUR produces turquoise.

– PIN produces pink.

This map element makes the text in row 1, columns 2–80, blue. As the map

element’s corresponding comment confirms, this blue string of text is the display

header.

�3� This type of map element uses the repetition factor option to copy the attribute

or attributes specified for a particular row onto subsequent rows. A repetition map

element uses the following format:

v The number 99 signals the repetition of an element.

v In SIZE-x-y:

– SIZE represents the total number of rows in the panel. Use the word SIZE as

shown; do not replace it with a number.

– x is the number of unused or blank lines between the end of the panel data

and the prompt line. In the sample, no blank or unused lines occur between

the end of the panel data and the prompt line.

– y is the number of the starting row that is to copy, or repeat, the attribute or

attributes from the preceding row. In the sample, attributes from row 6 are to

be repeated on the subsequent rows, starting with row 7.
v The last item (2) is the number of attributes on row 6 that are repeated. In the

sample, the two attributes specified in the map for row 6 are to be repeated.

This map element copies the two attributes specified for row 6 onto subsequent

rows starting at row 7, and continues to the prompt line.

�4� This type of map element uses the variable row placement option to specify

the row that contains the attribute. This option uses the following format:

v The first item (1) is the number of attributes in the map element. This number

can be 1–4. In the sample, the map element has one attribute, the color blue

(BLU).

v The second item (SIZE-x) indicates the display row that reflects the attribute,

where:

– SIZE represents the total number of rows in the display. Use the word SIZE as

shown; do not replace it with a number.

– x is the number of lines above the command line. For example, for the

Alerts-Static display:

- SIZE-4 is the first prompt line.

- SIZE-3 is the second prompt line.

- SIZE-2 is the message line.

- SIZE-1 is the NetView status line.

- SIZE-0 is the command line.

In the sample, the attribute is to appear on the first prompt line.

Note: Be sure that the command line is defined on byte 80 of the NetView

status line. Otherwise, some bytes can be overwritten.

Customizing Hardware Monitor Displayed Data

90 Customization Guide

v The third item (1) is the number of the display column that contains the

attribute character. In the sample, the attribute character is placed in column 1.

Consequently, the displayed text begins in column 2.

Note: Be sure that the display text you want to modify is preceded by a blank

space. Otherwise, the character representing the attribute in the color

buffer overwrites some of the display text, and some characters are

replaced with blanks.

v The fourth item (50) is the maximum character length of the attribute. In the

sample, the specified attribute covers 50 characters on the display.

v The last item (BLU) is the attribute or sequence of several attributes. You can

specify up to four attributes, but only one from each category. If you want

multiple attributes to apply to the same character or string, you must specify the

attributes in the order shown in 89. In the sample, the color blue is the specified

attribute.

This sample map element makes the text in the first prompt line, columns 2–51,

blue.

Prompt Highlight Tokens

The prompt highlight token table BNJPROMP is located in the PDS named

NETVIEW.V5R3M0.BNJPNL2. You can modify this table. The maximum size of the

table is 25 prompts, with the prompt being a 15-byte character field. If you decide

to modify the table, use the Comment column for notes about the table. For

performance reasons, this table is not processed when building the Alert Dynamic

panel. Color is a 3-byte character field beginning at column 20. You can select only

those colors that are valid in the color maps. Table 17 is a sample of the format for

the prompt highlight token table.

 Table 17. Prompt Highlight Tokens

Prompt Token Color Comment

SEL# WHI PROMPT SEL#

LDM WHI PROMPT LDM

LSL1 WHI PROMPT LSL1

LSL2 WHI PROMPT LSL2

RESNAME WHI PROMPT RESNAME

RESNAME1 WHI PROMPT RESNAME1

RESNAME2 WHI PROMPT RESNAME2

'A' WHI PROMPT A

'B' WHI PROMPT B

'P' WHI PROMPT P

'EV' WHI PROMPT EV

'ST' WHI PROMPT ST

'DM' WHI PROMPT DM

'M' WHI PROMPT M

'DEL' WHI PROMPT DEL

'S' WHI PROMPT S

'D' WHI PROMPT D

'R' WHI PROMPT R

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 91

The table is read into storage at initialization. You can redefine the prompt

highlight tokens or add new ones, up to a maximum of 25. You receive a message

if the table is not successfully read at initialization.

Using NMVT Support for User-Written Programming

Network management vector transport (NMVT) support enables user-written

programs to report errors to the hardware monitor through generic alerts. Prior to

generic alerts, Recommended Action panels, Event Detail panels, and alert

messages were stored at the host in the NetView program. Each nongeneric alert

had a unique set of panels and messages.

Note: The original NMVT encoding contains many SNA major vectors including

Alerts. Subsequent encoding such as MDS_MU and CP_MSU contains many

of the same major vectors and are covered under the term NMVT in this

section.

Coded generic alerts are contained in the NMVT. Generic alert code points are

used to dynamically build the hardware monitor panels. Nongeneric alerts are

used mainly for migration purposes. You should create new user-defined alerts

using generic alerts.

Reference: For more information on major vectors and subvectors of an NMVT,

refer to the SNA library.

This section contains a sample generic alert and the associated panels that are built

by the hardware monitor. (See Figure 32 on page 95 through Figure 36 on page 99.)

This section also describes how each panel is built.

User-Defined Alerts (Nongeneric)

Sixteen block IDs (X'F00'–X'F0F'), which are part of NMVT major vector X'0000', are

reserved for generating user-defined alerts.

The hardware monitor reserves USER0��–USERF�� (where �� are required blank

space X'40' characters to pad the name to 7 characters) for use as the

corresponding 7-character software identifier in the software product program

number (X'08') subfield of the first product identifier (X'11') subvector of the

NMVT. These are mapped to the block IDs from X'F00' to X'F0F'.

The hardware monitor allows a 1-byte alert description code within the basic alert

(X'91') subvector of the NMVT. This code lets you further qualify the alert. Put

your alert description code in the second byte of the 2-byte Alert Description Code

field. The hardware monitor ignores the first byte of that field.

NMVT-to-Panel ID Mapping

Using the block ID derived from the software product program number and the

alert description code, the hardware monitor maps the NMVT to the following:

v 14-line panel

A 14-line panel appears on the Recommended Action panel of the hardware

monitor for the NMVT. The PDS member name for this 14-line panel is in the

range between BNIF00xx and BNIF0Fxx, where the range of block IDs is from

X'F00' to X'F0F', and xx is the hexadecimal value of the alert description code.

The lines can be up to 80 characters long.

Customizing Hardware Monitor Displayed Data

92 Customization Guide

v 7-line panel

A 7-line panel appears on the hardware monitor’s event detail panel for the

NMVT. The 7-line panel’s PDS member name is in the range between BNKF00xx

and BNKF0Fxx, where the range of block IDs is from X'F00' to X'F0F', and xx is

the hexadecimal value of the alert description code.

The first eight translated characters of each of the first three X'A0' or X'A1'

qualifier subvectors are displayed on an eighth line, immediately following the

Event Detail panel. Write the Event Detail messages, with titles on the seventh

line, to describe the qualifiers.

v 48-byte alert description

A 48-byte alert description appears on the Alerts-Dynamic, Alerts-Static,

Alerts-History, Event Detail, and Most Recent Events panels. The 48-byte text

descriptions for a block ID are in a NetView message CSECT whose link-edit

load module name is in the range between BNJVMF00 and BNJVMF0F.

Panel Formats

For each new Recommended Action panel or Event Detail panel, use the same

format as in the existing panels to add a panel to the NetView panel library or a

concatenated user library.

For each new 48-byte alert description CSECT, use the same format as an existing

BNJVMxxx CSECT. BNJVMxxx CSECTs are coded using the macro DSIMDS. No

variable substitution is permitted for 48-byte alert descriptions.

User-Defined Alerts (Generic)

Generic alerts allow coded alert data to be transported within the alert, eliminating

the need for stored panels. The coded data can be one of the following:

v An index into predefined tables, containing short units of text that are used to

build a panel

v Textual data that appears directly on the panel

Coded data is maintained in code point tables which can be customized (For more

information on customizing code point tables, see “Modifying Generic Code Point

Tables” on page 101). The text strings indexed by the code points, and the display

of textual data that was sent in the alert, are in the same format no matter which

product sent the alert. Also, the same terminology is used to define similar

problems within different products because each product uses terminology defined

by Tivoli.

Generic alerts produce the same Alerts, Recommended Action, and Detail panels as

the hardware monitor’s nongeneric alert support, but the panels are built

dynamically rather than using stored panels. Code points index into the tables

defined by Tivoli and the user.

The alert description and probable cause code points are used to build the

hardware monitor Alerts-Dynamic, Alerts-Static, Alerts-History, Event Detail, and

Most Recent Events panels. The user cause, install cause, failure cause, and

recommended action code points are used to build the hardware monitor

Recommended Action panel. The detail data code points are used to identify the

qualifiers that can appear on the hardware monitor Recommended Action or Event

Detail panel. Products use the same set of architected product-independent

terminology to define their Alert, Recommended Action, and Detail panels. Text

data transported in the NMVT is displayed on the Event Detail panel.

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 93

The NetView program ships generic code point tables that can be customized (for

more information on customizing code point tables, see “Modifying Generic Code

Point Tables” on page 101.). The generic code point tables shipped by NetView are:

v BNJ92TBL—Alert description code points

v BNJ93TBL—Probable cause code points

v BNJ94TBL—User cause code points

v BNJ95TBL—Install cause code points

v BNJ96TBL—Failure cause code points

v BNJ81TBL—Recommended action code points

v BNJ82TBL—Detail data code points

v BNJ85TBL—Detailed data code points, subfield X'85'

v BNJ86TBL—Actual action code points.

Using the GENALERT Command

You can use the GENALERT command to create your own alerts. The GENALERT

command is described in the NetView online help.

Building Generic Alert Panels

Figure 32 on page 95 is an example of a generic alert NMVT. Unique panels are

built using the information contained in a generic alert record.

Reference: For more information on NMVTs, refer to the SNA library.

Customizing Hardware Monitor Displayed Data

94 Customization Guide

Figure 33 on page 96 through Figure 35 on page 99 describe how each unique

panel is built using the information contained in a generic alert NMVT. Figure 33

on page 96 shows a sample Alerts-Dynamic panel. Explanations of the numerical

references follow the panel.

X'161101'
X'130012'
X'F9F9F9F9F1F1C1F0F5'
X'F0C1F0C1F0C1F0'
X'1798'
X'0782213400'
X'0004'
X'0782000911'
X'F2F2'
X'0782000E00'
X'00DC'
X'2548'
X'1060'
X'D7C3C9C4D3E4F0F4'
X'05C3D5D4F0F1'
X'0D82'
X'00DA11C3D6D4D460C5D9D9'
X'068200D1010F'
X'3631'
X'060211340500'
X'0512C5D5E4'
X'032112'
X'2630'
X'E3C8C9E240E2E4C2C6C9C5D3C440C9C4C5D5E3C9C6C9C5E240E3C8C540E3C5E7E340D4E2'

00 SF - hardware product identifier

98 SV - Detailed Data

48 SV - Correlation

31 SV - Self Defining Text Message
02 SF - Coded Character Set ID
12 SF - National Language ID
21 SF - Sender ID
30 SF - Text Message

11 SV - Product Identifier

82 SF - qualifier

82 SF - qualifier

82 SF - qualifier

60 SF - correlation for supporting data

82 SF - qualifier

82 SF - qualifier

X'2796'
X'0601'
X'0503'
X'33C2'
X'068200'
X'61'
X'0004'
X'0C8200'
X'53'
X'11F0F0406040F1C6'
X'0A81'
X'0611'
X'0500'
X'3110'
X'00E1'
X'038321'
X'1705'
X'151000'
X'07D7E4F9F9F9F900F1'
X'07D3C9D5C5F0F440F9'
X'4D1000'
X'341104'
X'0E02C1C3C661C9C2D44040F0F0F3'
X'0804F0F1F0F2F0F3'
X'0A06C1C3C661C9C2D440'
X'0A07C6C6C7C1C9E3D9F3'
X'07098603351225'

code point
code point

code point

code point

code point
code point
code point
code point

name/type pair
name/type pair

02 SF - software product serviceable component ID
04 SF - software product common level
06 SF - software product common name
07 SF - software product customization ID
09 SF - software product customization date and time

96 SV - Failure Cause(s) and Action(s)

05 SV - Resource Hierarchy

10 SV - PSID

01 SF - failure cause(s)

82 SF - qualifier(s)

82 SF - qualifier(s)

81 SF - recommended action(s)

83 SF

10 SF

11 SV - Product Identifier

X'41038D5002000000'
X'01230000'
X'0A0108105901020A2827'
X'0B92000001'
X'1603'
X'1A2B3C4D'
X'0693'
X'0403'
X'2012'
X'1195'
X'0601'
X'1502'
X'13E1'
X'038391'
X'0681'
X'0101'
X'1504'

Response Header
Major Vector Length and Key
01 SV - Date/Time
92 SV - Alert Description

93 SV - Probable Cause(s)

95 SV - Install Cause(s) and Action(s)

code point

code point
code point

01 SF - install cause(s)

83 SF - qualifier(s)
81 SF - recommended action(s)

code point
code point

code point
code point

Figure 32. Sample Generic Alert Record

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 95

Alerts-Dynamic Panel

 An entry on the Alerts-Dynamic panel is built from a number of subvectors (X'92',

X'93', and X'05'). Figure 32 on page 95 creates the results for Figure 33.

�1� The RESNAME and TYPE come from the last name and type pair in the X'05'

subvector. The sample display shows a RESNAME of PU9999 and a TYPE of LINE.

�2� The * indicates that the RESNAME preceding the TYPE does not belong to the

TYPE. The TYPE is always associated with the last name in the hierarchy, but the

name depends on how the X'05' is coded. The Do Not Display Resource Name

Indicator bit is set to 1 for the last name and type pair (subvector X'05', subfield

X'10', second name and type pair, eighth byte, second bit).

�3� The ALERT DESCRIPTION is derived from code point X'1603' in the X'92'

subvector. The code point provides an index into a table containing the alert

description text messages. The sample shows an ALERT DESCRIPTION of COMM

SUBSYSTEM FAILURE.

�4� The PROBABLE CAUSE is derived from code point X'0403' in the X'93' subvector.

The code point provides an index into a table containing the probable cause text

messages. The sample shows a PROBABLE CAUSE of COMM SUBSYSTEM CTRL.

�5� The + is included because the X'93' subvector in Figure 33 contains more than

one probable cause code point. The + indicates that more probable causes can be

seen on the Event Detail panel.

Figure 34 on page 97 shows a sample Recommended Action panel. Explanations of

the numerical references follow the panel.

 N E T V I E W SESSION DOMAIN: CNM01 OPER1 03/01/95 14:41:03

 NPDA-30A * ALERTS-DYNAMIC *

 DOMAIN RESNAME TYPE TIME ALERT DESCRIPTION:PROBABLE CAUSE

 CNM01 PU9999 *LINE 14:41 COMM SUBSYSTEM FAILURE:COMM SUBSYSTEM CTRL +

 �1� �2� �3� �4� �5�

 DEPRESS ENTER KEY TO VIEW ALERTS-STATIC

 ???

CMD==> _

Figure 33. Sample of Alerts-Dynamic Panel

Customizing Hardware Monitor Displayed Data

96 Customization Guide

Recommended Action for Selected Event Panel

 The Recommended Action panel is built from a number of subvectors (X'94', X'95',

and X'96') and subfields (X'01', X'81', X'82', and X'83').

�1� The resource names (PU9999 and LINE04) are taken from the X'05' hierarchy

names list subvector. In Figure 32 on page 95, only names from the X'05' subvector

are used because the Hierarchy Complete Indicator bit (byte 2 bit 0) in the

indicator bit X'05' subvector is set to X'0'. If this bit was set to 1, the NetView

program would concatenate the names in the X'05' subvector to the names

supplied by VTAM.

�2� The resource types (PU and LINE) are derived by converting the type codes in

the X'10' subfield of the X'05' subvector (X'F1' and X'F9') into displayable resource

types. For more information on changing resource types, see “Adding or

Modifying Resource Types” on page 104.

�3� The X'94' subvector (NONE) carries user-caused information. Because the X'94'

subvector is not included in Figure 32 on page 95, user-caused information is not

displayed.

�4� The two install-caused probable causes:

INCORRECT MICROCODE FIX

INCORRECT SOFTWARE GENERATION:

are built from code points (X'1502' and X'13E1') in the X'01' subfield within the

X'95' subvector. The E in the X'13E1' code point indicates an X'83' subfield is

needed to complete the install cause.

�5� The qualifier on the install cause (ACF/IBM) is displayed because of the X'83'

subfield of the X'95' subvector. The X'83' subfield contains the value X'91'

 N E T V I E W SESSION DOMAIN: CNM01 OPER1 03/01/95 14:41:17

 NPDA-45A * RECOMMENDED ACTION FOR SELECTED EVENT * PAGE 1 OF 1

 CNM01 PU9999 LINE04 �1�

 +--------+

 DOMAIN | PU |----LINE---- �2�

 +--------+

 USER CAUSED - NONE �3�

 INSTALL CAUSED - INCORRECT MICROCODE FIX �4�

 INCORRECT SOFTWARE GENERATION: ACF/IBM �5�

 ACTIONS - I013 - VERIFY X.25 SUBSCRIPTION NUMBER �6�

 I085 - APPLY CORRECT SOFTWARE LEVEL

 FAILURE CAUSED - COMMUNICATIONS SUBSYSTEM �7�

 LINE ADAPTER MICROCODE

 ADAPTER NUMBER 04 �8�

 LINE ADDRESS RANGE 00 - 1F �9�

 ACTIONS - I032 - DUMP CHANNEL ADAPTER MICROCODE �10�

 I026 - RUN APPROPRIATE TRACE

 I136 - CONTACT COMMUNICATIONS SYSTEMS PROGRAMMER

 I010 - PERFORM 9999 PROBLEM DETERMINATION PROCEDURES

 �11�

 ENTER DM (DETAIL MENU) OR D (EVENT DETAIL)

 ???

CMD==> _

Figure 34. Sample of Recommended Action for a Selected Event Panel

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 97

indicating that the qualifier is taken from the product ID subfield (X'06' Software

Product Common Name) of the first product identifier subvector (X'11').

�6� The two install-caused actions:

I013 - VERIFY X.25 SUBSCRIPTION NUMBER

I085 - APPLY CORRECT SOFTWARE LEVEL

are taken from code points (X'0101' and X'1504') in the X'81' subfield of the X'95'

subvector.

�7� The two failure-caused probable causes:

COMMUNICATIONS SUBSYSTEM

LINE ADAPTER MICROCODE

are taken from code points (X'0503' and X'33C2') in the X'01' subfield of the X'96'

subvector. The C in the X'33C2' code point indicates that two detail data subfields,

either X'82' or X'85' subfields, are needed to complete the failure cause. This

example uses X'82' subfields. While either X'82' or X'85' subfields can be used here,

a combination of the two would not be valid. Within a subvector, all of the detail

qualifiers must be X'82' subfields or X'85' subfields.

�8� Indicates the ADAPTER NUMBER 04 is broken down from the first X'82' subfield in

the X'96' subvector. The number can be:

00 No information is taken from the PSID subvector

61 A code point for adapter number

00 Hexadecimal data follows

04 Hexadecimal data to be displayed

�9� LINE ADDRESS RANGE 00 - 1F is broken down from the second X'82' subfield in

the X'96' subvector. The range can be:

00 No information is taken from the PSID subvector

53 A code point for line address range

11 EBCDIC data follows

F0F0406D40F1C6

EBCDIC data to be displayed

�10� The failure-caused actions:

I032 - DUMP CHANNEL ADAPTER MICROCODE

I026 - RUN APPROPRIATE TRACE

I136 - CONTACT COMMUNICATIONS SYSTEMS PROGRAMMER

I010 - PERFORM 9999 PROBLEM DETERMINATION PROCEDURES

are taken from the code points (X'0611', X'0500', X'3110', and X'00E1') in the X'81'

subfield of the X'96' subvector. The E in the X'00E1' code point indicates that an

X'83' subfield is needed to complete the failure cause.

�11� The qualifier on the failure cause (9999) is displayed because of the X'83'

subfield of the X'96' subvector. The X'83' subfield contains the value X'21',

indicating that the qualifier is taken from the first hardware PSID subfield (X'00')

of the PSID subvector (X'11').

Figure 35 on page 99 and Figure 36 on page 99 show sample Event Detail panels.

Explanations of the numerical references follow the figures.

Customizing Hardware Monitor Displayed Data

98 Customization Guide

Event Detail Panel

The Event Detail panel is built from subvectors X'92', X'93', X'98', X'01', X'31', and

X'48', and subfield X'82'.

�1� The resource names (PU9999 and LINE04) are taken from the X'05' hierarchy

names list subvector. In Figure 32 on page 95, only names from the X'05' subvector

are used because the Hierarchy Complete Indicator bit (byte 2, bit 0) in the X'05'

subvector is set to X'0'. If this bit was set to 1, the NetView program would

concatenate the names in the X'05' subvector to the names supplied by VTAM.

 N E T V I E W SESSION DOMAIN: CNM01 OPER1 03/20/95 14:41:32

 NPDA-43S * EVENT DETAIL * PAGE 1 OF 2

 CNM01 PU9999 LINE04 �1�

 +--------+

 DOMAIN | PU |----LINE---- �2�

 +--------+

 DATE/TIME: RECORDED - 01/02 10:41 CREATED - 03/20/95 10:40:39 �3�

 EVENT TYPE: PERMANENT �4�

 DESCRIPTION: COMMUNICATIONS SUBSYSTEM FAILURE �5�

 PROBABLE CAUSES:

 COMMUNICATIONS SUBSYSTEM CONTROLLER �6�

 TOKEN-RING LAN

 QUALIFIERS:

 1) 9999 COMMUNICATION CONTROL UNIT 0004 �7�

 ENTER A (ACTION) OR DM (DETAIL MENU)

 ???

CMD==> _

Figure 35. Sample of Event Detail Panel (Page 1)

 N E T V I E W SESSION DOMAIN: CNM01 OPER1 03/20/95 14:41:49

 NPDA-43S * EVENT DETAIL * PAGE 2 OF 2

 CNM01 PU9999 LINE04

 +--------+

 DOMAIN | PU |----LINE----

 +--------+

 QUALIFIERS (CONTINUED):

 2) EVENT CODE 22

 3) REASON CODE 00DC

 CONTROL PROGRAM TEXT: �8�

 THIS SUBFIELD IDENTIFIES THE TEXT MS

 CORRELATION FOR SUPPORTING DATA �9�

 PCID: PCIDLU01 NETWORK QUALIFIED NAME: CNM01

 1) LOG ID COMM_ERR

 2) LOG RECORD NUMBER 15

 UNIQUE ALERT IDENTIFIER: PRODUCT ID - ACF/IBM ALERT ID - 1A2B3C4D

 �10� �11�

 ENTER A (ACTION) OR DM (DETAIL MENU)

 ???

CMD==> _

Figure 36. Sample of Event Detail Panel (Page 2)

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 99

�2� The resource types (PU and LINE) are derived by converting the type codes in

the X'10' subfield of the X'05' subvector (X'F1' and X'F9'), into displayable resource

types. For more information on changing resource types, see “Adding or

Modifying Resource Types” on page 104.

�3� The DATE/TIME RECORDED is the time the record is logged to the hardware

monitor database. The created field shows the time the record was created by the

sending product. It is taken from the X'10' subfield of the X'01' subvector.

�4� EVENT TYPE is derived from byte 4 (Alert Type) the X'92' subvector.

�5� DESCRIPTION is derived from the code point (X'1603') in the X'92' subvector, as

is the description on the Alerts panel. However, a longer version of the text is

displayed on this panel.

�6� PROBABLE CAUSES are taken from the code points (X'0403' and X'2012') in the

X'93' subvector. A longer version of the text is displayed on this panel than was

displayed on the Alerts panel. Also, all of the probable causes are displayed.

�7� QUALIFIERS are derived from either X'82' or X'85' subfields. The NetView

program ignores X'01' subfields and associated sub-subfields (including X'82' and

X'85') in a X'98' subvector.

While either X'82' or X'85' subfields can be used here, a combination of the two

would not be valid. Within a subvector, all of the detail qualifiers must be X'82'

subfields or X'85' subfields.

This example uses X'82' subfields, and the qualifiers are decoded as follows:

First in the X'98' subvector:

21 Data should be taken from the first hardware PSID subfield (X'00') of the

PSID subvector (X'11').

34 Code point indicating communication control unit.

00 Hexadecimal data follows.

0004 Hexadecimal data to be displayed.

Second in the X'98' subvector:

00 No data is taken from the PSID subvector.

09 Code point indicating event code.

11 EBCDIC data follows.

F2F2 EBCDIC data to be displayed.

Third in the X'98' subvector:

00 No data is taken from the PSID subvector.

0E Code point indicating reason code.

00 Hexadecimal data follows.

00DC Hexadecimal data to be displayed.

Page 2 of the Event Detail panel (see Figure 35 on page 99) contains the following

information:

�8� CONTROL PROGRAM TEXT is the text title displayed because of the subfield X'21' of

subvector X'31'. The text itself is taken directly from subfield X'30' of the X'31'

subvector and displayed on the screen.

Customizing Hardware Monitor Displayed Data

100 Customization Guide

�9� The CORRELATION FOR SUPPORTING DATA is displayed from the X'48' subvector.

Subfield X'60' specifies that the network-qualified procedure correlation identifier

be used to uniquely identify a session.

Either X'82' or X'85' subfields are used for supporting data. This example uses two

X'82' subfields to identify the supporting data.

While either X'82' or X'85' subfields can be used here, a combination of the two is

not valid. Within a subvector, all of the detail qualifiers must be X'82' subfields or

X'85' subfields.

�10� The product ID (ACF/IBM) is taken directly from the first product identifier

(X'11') subvector in the first PSID (X'10') subvector. Figure 32 on page 95 uses the

Software Product Serviceable Component Identifier (X'02') subfield.

�11� The alert ID number (1A2B3C4D) is taken from subvector X'92' bytes 7–10.

Modifying Generic Code Point Tables

This section explains how to modify the generic alert code point tables that are

shipped with the NetView program. You can modify the tables before or after

NetView initialization. If after, use the CPTBL command to dynamically activate

the changes. The CPTBL command is described in NetView online help.

Table Formats

Each table contains a different type of code point. The tables are:

v BNJ92TBL: Alert description code points

v BNJ93TBL: Probable cause code points

v BNJ94TBL: User cause code points

v BNJ95TBL: Install cause code points

v BNJ96TBL: Failure cause code points

v BNJ81TBL: Recommended action code points

v BNJ82TBL: Detail data code points

v BNJ85TBL: Detail data code points, X'85' subfield

v BNJ86TBL: Actual action code points.

The fourth and fifth characters of the table name identify the subvector or subfield

that contains the code points.

The first entry in the code point table is the control entry. Columns 1 and 2

represent the subvector number which specifies which of the code point tables is

being created or updated. Acceptable values are 92, 93, 94, 95, 96, 81, 82, 85, or 86.

During initialization, this number must match the table name. Column 3 must be

blank and all remaining columns are unused and are ignored. (You should not use

this area for comments because it may be used for other purposes in the future.)

When using the CPTBL command, the name of the file that contains the code point

definitions does not have to be one of the predefined names. NetView uses this

control entry to determine the table type.

The format of each subsequent entry in the code point table is:

v Columns 1–4 contain the 4-character hexadecimal code point number. Valid

characters are 0–9 and A–F. The code point range from X'E000' to X'EFFF' is

reserved for your use. To use code points outside this range, contact the Tivoli

Support Center.

If a code point is defined more than once in a given table, the first entry is used,

subsequent entries are ignored, and an informational message is generated.

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 101

v Column 6 contains the embed flag (Y) indicating that qualifier data associated

with the X'82', X'83', or X'85' subfield is placed before the code point’s text,

embedded within the code point’s text, or follows on the same line after the

code point’s text. Any character other than Y indicates that the embed flag is off.

If the embed flag is turned on, the embed information included in the generic

alert is embedded at the point marked by a dollar sign ($). Embedded text is

only supported for BNJ81TBL, BNJ86TBL, BNJ94TBL, BNJ95TBL, and BNJ96TBL.

Because no variable substitution is allowed for probable cause and alert

description, an embed flag is ignored in BNJ92TBL and BNJ93TBL.

v Columns 8–72 contain the text description for this code point. The maximum

length of the text varies as follows:

– Probable cause: 40 characters for the first entry of a given code point, 20 for

the second. (See �4� in “Example of BNJ92TBL Code Points Table” on page

103 for an explanation of the second entry.)

– Alert description: 40 characters for the first entry of a given code point, 25 for

the second. (See �4� in “Example of BNJ92TBL Code Points Table” on page

103 for an explanation of the second entry.)

– Detail data: 40 characters

– Others: 108 characters.

Start in column 2 when continuing the text on the next line.

v Columns 73–80 are ignored and can be used for optional sequence numbers.

Notes:

1. Code points in table BNJ82TBL must be left-justified and padded with zeros.

For example, you enter code point 12 as 1200.

2. The text for the code point entries added to the NetView BNJ81TBL code point

table should begin with Ennn. The text for the code point entries added to the

NetView BNJ86TBL code point table should begin with Rnnn. The use of Ennn

and Rnnn allows the code points to be supported by the ACTION command

list (for more information on the ACTION command list, refer to the NetView

online help). The action text in BNJ81TBL and BNJ86TBL should begin this way.

Otherwise, when BNJDNUMB is used to generate recommended action

numbers, it overlays the first 4 bytes of the recommended action text.

3. The hardware monitor searches the tables for the specific code points. If a

match is not found, the hardware monitor searches some tables for a general

code point.

A general code point is the code point with the last 2 bytes set to zero. For

example, if the specific code point is 1620, the general code point is 1600. If a

general code point is found, its text is returned as if it matched the original

code point. A general code point contains text that is valid for all specific code

points that it applies to. General code points are not available for BNJ82TBL

and BNJ85TBL (for information on general code points, refer to the SNA

library).

4. All code point tables are in uppercase. However, if you want to enter your own

code in lowercase or mixed case, NetView does not convert the text to

uppercase.

Use of %INCLUDE Statements

The use of %INCLUDE statements in the code points tables allows you to organize

your code points information for easier maintainability.

You can choose to have one main table for each code point type. This table can

contain the code points shipped with the NetView program and %INCLUDE

statements for user-defined subtables and subtables defined by other products.

Customizing Hardware Monitor Displayed Data

102 Customization Guide

BNJxxTBL (where xx is the table number) are tables Tivoli does not recommend

modifying. Use these tables as main tables for each code point. If customization of

these tables is required, use the BNJxxUTB (where xx is the table number) file

which is included by the main table (BNJxxTBL) for this purpose.

Example of BNJ92TBL Code Points Table

An example of a code points table is shown in Figure 37. Explanations of the

numerical references follow the figure.

 �1� The first non-comment line is the control entry.

�2� Code point tables can use %INCLUDE statements to embed other files into the

code point table.

�3� The code point (0100) is a 4-character hexadecimal number, starting in column

1.

�4� The text description in columns 8–72 appears on the hardware monitor

displays.

�5� The hardware monitor has different panel formats that allow different length

text for alert descriptions (92) and probable causes (93). The maximum length of

the text for either entry is 40 characters. Abbreviated text is required, if the text

exceeds 25 characters for alert descriptions or 20 characters for probable causes.

Errors occur for text entries greater than 40 characters.

�6� Any entries in the table with code point FFFF and no text are ignored (to allow

for migration). Entries with code point FFFF and text are treated as any other code

point.

Example of BNJ94TBL Code Points Table

Another example of a code points table is shown in Figure 38.

 �1� Code point tables can use %INCLUDE statements to embed other files into the

code point table.

 * An asterisk in column 1 indicates a comment line.

 * The following line is the control entry indicating table type.

 �1�92

 * Blank lines are allowed for readability.

 �2�%INCLUDE BNJ92UTB

 �3� �4�

 0100 SIMPLE CODE POINT TEXT;

 �5�E123 THIS TEXT IS EXACTLY FORTY CHARS LONG XX;

 E123 THIS IS THE SAME IN 25 XX;

 �6�FFFF

Figure 37. Sample of BNJ92TBL Code Points Table

 * An asterisk in column 1 indicates a comment line.

 * The following line is the control entry indicating table type.

 94

 �1�%INCLUDE BNJ94UTB

 �2�0100 Y CODE POINTS TEXT WITH DETAIL INSERTS $ AND $

 �3�0200 CODE POINTS TEXT ILLUSTRATING CONTINUATION OF THE TEXT TO A SECON

 D LINE

 �4�0100 DUPLICATE TEXT

Figure 38. Sample of BNJ94TBL Code Points Table

Customizing Hardware Monitor Displayed Data

Chapter 6. Customizing Hardware Monitor Displayed Data 103

�2� The embed flag (Y in column 6) indicates that qualifier data is embedded at the

point marked by a dollar sign ($).

�3� Start in column 2 when continuing text on the next line. The text on the first

line starts in column 8 and continues through column 72.

�4� Because this code point has already been defined in the table, this entry is

ignored and an informational message is generated.

Activating the Modified Code Point Tables

The CPTBL command is very similar to the AUTOTBL command and is used to

dynamically activate changes made to code point tables after NetView is initialized

(for a description of the CPTBL command, refer to NetView online help). Use the

TEST option on the CPTBL command to verify the syntax of a code point table

before activation.

Adding or Modifying Resource Types

You can add new resource types for hierarchical displays in the hardware monitor

by modifying the member BNJRESTY.

BNJRESTY is a member of the data set NETVIEW.V5R3M0.BNJPNL2, defined by

the definition statement BNJPNL2 in the NetView start procedure.

Figure 39 shows the format for BNJRESTY. Explanations of the numerical

references follow the figure.

 �1� A 2-character hexadecimal number, starting in column 1, flows to the NetView

program in the X'05' subvector. Valid characters are 0–9 and A–F. If you include

duplicate hexadecimal codes, the system uses the first entry of the duplicated code.

Numbers from X'E0' to X'EF' are reserved for customer-defined resource types.

�2� The four characters in columns 4–7 are taken as the resource type. Valid

characters are 0–9, A–Z, and any printable special characters. A resource type of

less than 4 characters must begin in column 4, and be padded on the right with

blanks. Do not use delimiters, such as a comma (,), period (.), or equal sign (=), as

characters in the resource type.

�3� An optional comment can begin anywhere after the resource type.

If BNJRESTY is modified while the hardware monitor task BNJDSERV is active, the

new resource types are not recognized. Use STOP TASK=BNJDSERV followed by

STARTCNM NPDA so that the NetView program can recognize any new resource

types or use the RTTBL command to activate a modified BNJRESTY member.

If the NetView program finds an entry that is not valid in BNJRESTY during

activation of the NetView program or when the RTTBL command is invoked, an

error message appears on the command facility console and the NetView program

uses the Tivoli-supplied resource types.

�1� �2��3�

10 DISK your comments

Figure 39. Sample Contents of BNJRESTY

Customizing Hardware Monitor Displayed Data

104 Customization Guide

Chapter 7. Modifying Network Asset Management Command

Lists

Network asset management provides a way of collecting inventory data from a

subset of hardware and software devices automatically. You can use network asset

management to collect vital product data (VPD) such as serial numbers, machine

types, and model numbers for hardware products and software information. This

information includes version and release levels. However, the NetView program

does not verify the returned data from devices supporting network asset

management; it only provides a way to collect and log the data.

Reference: Refer to the IBM Tivoli NetView for z/OS Administration Reference for

information on the record formats. Refer to the NetView online help for

information about NetView-provided command lists.

Any device that supports the REQUEST/REPLY PSID and LPDA-2 architecture can

report VPD to the NetView program. An attempt to solicit VPD from a device that

does not support the architecture can cause the keyboard to lock or extraneous

data to appear on the screen. You may need to press the RESET key or clear the

screen, but these actions do not affect the VPD collection in the NetView program.

Reference: Refer to the SNA library for information on the REQUEST/REPLY

PSID and LPDA-2 architecture.

The following examples are some physical units (PUs) that support the

REQUEST/REPLY PSID architecture:

v 3720/NCP

v 3725/NCP

v 3745/NCP

v 3174 that reports data for itself and many types of attached devices such as

various models of 3191, 3192, and 3194 display stations.

Personal computers running OS/2® are required with these products.

Reference: Instructions for entering VPD for a device are located in the user’s

guides for that device.

The following are examples of data circuit-terminating equipment (DCE) that

supports the LPDA-2 modem and line status architecture:

v 586x modems

v 5822 DSU/CSU

v 7825 DSU/CSU

v 786x modems (7861, 7865, 7868)

Network asset management provides the VPDCMD command to solicit VPD from

a given device and the VPDLOG command to build and log a record to an external

logging facility (such as SMF). You can use Service Level Reporter (SLR) to view

the data interactively or to generate reports, or the VPDALL command to generate

VPDPU and VPDDCE command entries for all devices within a NetView domain.

If you have any resources that require switched lines, be sure that the switched

lines are active before collecting VPD.

© Copyright IBM Corp. 1997, 2007 105

Network asset management provides the following command lists:

VPDPU

Collects and logs VPD from a single PU and its attached devices. You can

enter this command list from an operator’s console or from another

command list.

VPDDCE

Solicits and logs VPD from DCEs that are in a direct path between a

specified NCP and a specified PU. You can issue this command list from

an operator’s console or from another command list.

VPDACT

Is the default name of a command list that the VPDALL command

generates when issued with the CREATE option. VPDALL reads a VTAM

configuration member in VTAMLST as input and generates a command list

called VPDACT (the default). VPDACT contains a list of VPDPU and

VPDDCE entries for devices in your domain. You can later issue VPDACT

to collect and log VPD from the supported devices in the NetView domain.

VPDLOGC

Is the command list that builds and logs START and END records. A

START record is generated for a VPDACT command list at the beginning

of a VPD solicitation. An END record is generated for a VPDACT

command list at the end of a VPD solicitation. Do not issue this command

list from an operator’s console or from a user-written command list.

VPDXDOM

Is a service command list used for VPD solicitation from cross-domain

resources. This command list is driven through a NetView automation

table. Do not issue this command list from an operator’s console or from a

user-written command list.

Reference: Refer to IBM Tivoli NetView for z/OS Administration Reference for the

record formats and the NetView online help for descriptions of VPD

command lists. Refer to IBM Tivoli NetView for z/OS Automation Guide

for additional information.

VPD Collection from a Single PU

The following list describes the procedures for collecting VPD from a single PU

and its attached devices:

1. Specify a resource name and issue the VPDPU or VPDDCE command list.

2. The command list issues a VPDCMD command to solicit data from the

specified resource, and waits for the response messages.

3. A PU responds with VPD for itself, or for itself and its attached devices.

4. The command list traps the response messages and saves the VPD, such as

machine type, model number, and serial numbers, in command list variables.

5. When the completion message is received, the command list builds records and

writes them to an external logging facility.

6. If any abnormal events occur before completion, a command list error message

is issued and the command list terminates. An abnormal event can be a logging

failure, an inactive VPDTASK, or an abend.

Modifying NAM Command Lists

106 Customization Guide

VPD Collection from a Single NetView Domain

The following list describes procedures for collecting VPD from a single NetView

domain:

1. A NetView operator enters the following command:

VPDALL CONFIG(ATCCON01),CREATE,CLIST(VPDACT),ADD

2. The VPDALL command list reads the specified nodes from the configuration

member (ATCCON01, in this example) in VTAMLST. VPDALL extracts all the

resource names from the VTAMLST nodes so that VPD can be collected.

VPDALL then builds VPDPU and VPDDCE entries in a command list called

VPDACT. VPDALL does not support dynamic reconfiguration decks (DRDs) or

DCEs on switched lines.

Note: To collect data from the entire domain, the configuration member must

contain the definitions for all the resources in the domain.

3. You can modify VPDACT by adding or deleting resource names.

4. When the VPDACT command list is executed, VPDLOGC is called to generate

a START record. VPDACT then calls the VPDPU and VPDDCE command lists

and, after they are complete, calls the VPDLOGC to generate an END record.

Focal Point VPD Collection

Figure 40 shows a focal point NetView program for VPD.

 The following steps describe the procedures for the collection of VPD for the

sample focal point NetView program shown in Figure 40.

 1. During installation, NV1 sets the common global variable SMFVPD to 200.

NV2 sets the common global variable to 250.

Note: CNMSTYLE sets the common global variable SMFVPD to 37.

 2. NV1 is designated as a focal point NetView program for VPD collection. In

the NetView automation table (DSITBL01), for NV1 only, uncomment the

statement designated to drive the VPDXDOM command list.

Reference: For more information, refer to the IBM Tivoli NetView for

z/OS Installation: Configuring Additional Components.

 3. Start DSIELTSK from the focal point NetView NV1.

SMFVPD=200 SMFVPD=250OST

START DOMAIN

ROUT NV2, START VPDTASK
DSITBL01

VPDXDOM Changes
SMFVPD to 200

ROUT NV2, VPDACT

MSG OPID X$S VPDLOG 250 DATA

NV1

NNT

NV2 External
Logging

Figure 40. VPD Focal Point NetView Program

Modifying NAM Command Lists

Chapter 7. Modifying Network Asset Management Command Lists 107

4. NV1 establishes a direct OST-to-NNT session with NV2 using the START

DOMAIN command.

 5. NV1 issues START VPDTASK.

 6. NV1 issues ROUTE NV2, START VPDTASK.

 7. NV1 issues ROUTE NV2, VPDACT. This causes the VPDACT command list in

NV2 to run under an NNT.

 8. In NV2, VPDACT verifies that it is running under an NNT, and generates the

following message:

MSG OPID X$S VPDLOG 250 ’1 STRING1 10 STRING2...’

where X$S is a special string recognized by the NetView automation table.

 9. When the VPDACT command list in NV2 writes the generated message to the

operator in NV1, the message triggers the NetView automation table to

execute the VPDXDOM command list in NV1.

Reference: Refer to IBM Tivoli NetView for z/OS Automation Guide for

additional information about the VPXDOM command list.

10. When VPDXDOM is entered, the message string is as follows:

DSI039I MSG FROM OPID : X$S VPDLOG 250 1 STRING1...

11. VPDXDOM verifies that NV1 set SMFVPD as a common global variable and

changes SMFVPD from 250 (NV2) to 200 (NV1).

12. VPDLOGC logs the data records under NV1’s SMF record number 200.

13. Be sure that the cross-domain session stays active until after the VPD

solicitation is completed.

Customization Considerations

You can customize the NetView-provided VPD command lists to suit your

requirements.

When modifying network asset management command lists to build different

record formats, do not exceed 256 bytes per record. NetView has a command string

limitation of 240 characters. You can write a command processor to make full use

of the VPD command.

Reference: Refer to IBM Tivoli NetView for z/OS Programming: Assembler for

information about command processors.

If you are changing the SMF record format, you cannot use record number 37. You

must globally define the SMF record number within the user-defined range of

128–255. If you are using SLR, you must write the SLR table to match your

modified SMF record format.

Reference: Refer to NetView online help and IBM Tivoli NetView for

z/OS Programming: REXX and the NetView Command List Language for

limitations on the use of &WAIT and RESET, and for considerations

regarding the issuance of a second network asset management

command list and network asset management command while a

previous network asset management command list is running.

To improve performance, you can do the following:

v Write a command list that reads in VPDACT to distribute the workload among

several autotasks. Dividing the workload among several OSTs or autotasks

Modifying NAM Command Lists

108 Customization Guide

allows multiple VPDPU or VPDDCE entries to execute simultaneously.

Otherwise, the VPDPU and VPDDCE entries are executed serially.

v Create several configuration members (for example, one member for each major

node) or, using VPDALL, create several command lists.

v Make each command list run under several tasks, such as an OST and an

autotask.

Modifying NAM Command Lists

Chapter 7. Modifying Network Asset Management Command Lists 109

Modifying NAM Command Lists

110 Customization Guide

Chapter 8. Customizing the Event/Automation Service

The Event/Automation Service (E/AS) lets you manage all network events from

the platform of your choice. You can use either the IBM Tivoli Enterprise Console®

or Tivoli NetView for z/OS (NetView) to see a comprehensive list of events in

your network.

The Event/Automation Service: Overview

The Event/Automation Service consists of the following services:

v Alert adapter service

The alert adapter service is an event adapter that converts Tivoli NetView for

z/OS alerts to console events and forwards the events to the console event

server. The alert adapter service collects filtered SNA alerts directly from the

NetView hardware monitor and translates the alerts into appropriate console

class or subclass instances. To receive alerts from NetView, the

Event/Automation Service registers with the NetView PPI. Filtered alerts from

the NetView hardware monitor are sent over the PPI to the alert adapter service.

All alerts to be converted will match the formats described in the IBM Systems

Network Architecture Management Services Reference.

v Message adapter service

The message adapter service is an event adapter that converts any message

forwarded from NetView message automation into console events. The resulting

events are forwarded to a designated event server. The message adapter collects

filtered messages directly from the NetView automation table and translates the

messages into appropriate console class or subclass instances. To receive

messages from NetView, the Event/Automation Service registers with the

NetView PPI. Filtered messages from the NetView message automation table are

sent over the PPI to the message adapter.

v Event receiver service

The event receiver service receives events from a console server and converts

them into SNA alerts. The converted alerts are then forwarded to the NetView

hardware monitor where they are filtered and routed to the NetView automation

table.

v Alert-to-trap service

The alert-to-trap service is an SNMP sub-agent that converts Tivoli NetView for

z/OS alerts to SNMP traps and forwards the traps to an SNMP agent. The

alert-to-trap service collects filtered SNA alerts directly from the NetView

hardware monitor and translates the alerts into appropriate SNMP trap

instances. To receive alerts from NetView, the Event/Automation Service

registers with the NetView PPI. Filtered alerts from the NetView hardware

monitor are sent over the PPI to the alert-to-trap service. All alerts to be

converted will match the formats described in the IBM Systems Network

Architecture Management Services Reference.

v Trap-to-alert service

The trap-to-alert service receives events from an SNMP manager and converts

them into SNA alerts. The converted alerts are then forwarded to the NetView

hardware monitor where they are filtered and routed to the NetView automation

table.

© Copyright IBM Corp. 1997, 2007 111

For general information about Tivoli event adapters, refer to the Tivoli Enterprise

Console Adapters Guide.

Starting the Event/Automation Service

The Event/Automation Service (E/AS) can be started from either the MVS system

console using a startup procedure, or from the UNIX System Services command

shell using a command file. The sample startup procedure installed with the E/AS

is IHSAEVNT. The command file used to start the E/AS from the UNIX System

Services command shell is IHSAC000.

The environment that the E/AS is started from (either the MVS system console or

the UNIX System Services command shell) determines certain operational

characteristics of the E/AS as follows:

v The location of default configuration files.

v Whether certain startup parameters can be specified.

v The default output logs for trace/error data.

All other operational characteristics of the E/AS are the same regardless of the

startup environment.

For information on installing and starting the E/AS, refer to the IBM Tivoli NetView

for z/OS Installation: Configuring Additional Components.

Customizing the Initialization of the Event/Automation Service

The Event/Automation Service (E/AS) has a number of configurable settings. A

few must be set by the E/AS administrator in order for the E/AS to successfully

initialize. For more information, refer to IBM Tivoli NetView for z/OS Installation:

Configuring Additional Components.

Configurable settings can be set by the E/AS administrator using configuration

files, startup parameters, and E/AS modification commands. Some configurable

settings can be set using more than one of these methods. Configurable settings are

set in the following order, from highest priority to lowest:

v E/AS modification commands are issued to the E/AS after initialization. Any

E/AS modification commands that affect a configurable setting change that

setting for the duration of the current execution of the E/AS only.

v A configurable setting that is specified as an E/AS startup parameter.

v A configurable setting that is specified in a configuration file.

v The default value of the configurable setting.

E/AS modification commands are discussed fully in the IBM Tivoli NetView for

z/OS Command Reference Volume 1.

Defaults for Configurable Settings

The following table lists all configurable settings and their defaults:

 Setting Default Overridden By

E/AS PPI name IHSATEC

PPI startup parameter, global

initialization file PPI statement

112 Customization Guide

Global initialization file name

Started with IHSAEVNT - IHSAINIT

Started with IHSAC000

--/etc/netview/global_init.conf

IHSAINIT startup parameter

Alert adapter configuration file name

Started with IHSAEVNT -

IHSAACFG

Started with IHSAC000

--/etc/netview/alert_adpt.conf

ALRTCFG startup parameter, global

initialization file ALRTCFG statement

Alert-to-trap configuration file name

Started with IHSAEVNT -

IHSAATCF

Started with IHSAC000

--/etc/netview/alert_trap.conf

ALRTTCFG startup parameter, global

initialization file ALRTTCFG

statement

Trap-to-alert configuration file name

Started with IHSAEVNT - IHSATCFG

Started with IHSAC000

--/etc/netview/trap_alert.conf

TALRTCFG startup parameter, global

initialization file TALRTCFG

statement

Message adapter configuration file

name

Started with IHSAEVNT -

IHSAMCFG

Started with IHSAC000

--/etc/netview/message_adpt.conf

MSGCFG startup parameter, global

initialization file MSGCFG statement

Event receiver configuration file

name

Started with IHSAEVNT --

IHSAECFG

Started with IHSAC000

--/etc/netview/event_rcv.conf

ERCVCFG startup parameter, global

initialization file ERCVCFG statement

Output log wrapping 0 OUTSIZE startup parameter

Disable console messages to

OpenEdition® shell

Enabled -P startup option

Console messages file name

Started with IHSAEVNT --

IHSAMSG1

Started with IHSAC000 --

/usr/lpp/netview/msg/C/ihsamsg1

-M startup option

Trace/error HFS path /tmp -E startup option

Trace settings Off for all tasks

Global initialization file TRACE

statement, TRACE command

Service startup All services are started

Global initialization file NOSTART

statement

Trace/error data logical destination SYSOUT

Global initialization file OUTPUT

statement, OUTPUT command

Tivoli Enterprise Console server IP

locations

No default

Alert adapter and message adapter

configuration file ServerLocation

statement

Tivoli Enterprise Console server port

numbers

0

Alert adapter and message adapter

configuration file ServerPort

statement

Alert adapter class definition

statement (CDS) file name

Started with IHSAEVNT --

IHSAACDS

Started with IHSAC000 --

/etc/netview/alert_adpt.cds

Alert adapter configuration file

AdapterCdsFile statement

Chapter 8. Customizing the Event/Automation Service 113

Alert-to-trap adapter class definition

statement (CDS) file name

Started with IHSAEVNT --

IHSALCDS

Started with IHSAC000 --

/etc/netview/alert_trap.cds

Alert-to-trap configuration file

AdapterCdsFile statement

Trap-to-alert adapter class definition

statement (CDS) file name

Started with IHSAEVNT --

IHSATCDS

Started with IHSAC000 --

/etc/netview/trap_alert.cds

Trap-to-alert configuration file

AdapterCdsFile statement

Event receiver class definition

statement file name

Started with IHSAEVNT --

IHSAECDS

Started with IHSAC000

--/etc/netview/event_rcv.cds

Event receiver configuration file

AdapterCdsFile statement

Message adapter format file name

Started with IHSAEVNT --

IHSAMFMT

Started with IHSAC000 --

/etc/netview/message_adpt.fmt

Message adapter configuration file

AdapterFmtFile statement

Maximum event cache size 64KB

Alert adapter and message adapter

configuration file BufEvtMaxSize

statement

Event cache HFS path /etc/Tivoli/tec/cache

Alert adapter and message adapter

configuration file BufEvtPath

statement

Maximum event cache retrieval

buffer size

64KB

Alert adapter and message adapter

configuration file BufEvtRdblkLen

statement

Amount to shrink the event cache 8KB

Alert adapter and message adapter

configuration file BufEvtShrinkSize

statement

Enable event buffering YES

Alert adapter and message adapter

configuration file BufferEvents

statement

Rate to flush the event cache 0

Alert adapter and message adapter

configuration file BufferFlushRate

Maximum number of events allowed

in the event cache

0

Alert adapter and message adapter

configuration file BufferEventsLimit

Tivoli Enterprise Console server

connection mode

connection_less

Alert adapter and message adapter

configuration file ConnectionMode

statement

Maximum size of a console event 4096 bytes

Alert adapter and message adapter

configuration file EventMaxSize

statement

Console event filtering definitions No filters defined

Alert adapter and message adapter

configuration file Filter statement

Console event filtering from event

cache definitions

No filters defined

Alert adapter and message adapter

configuration file FilterCache

statement

Mode of console event filtering OUT

Alert adapter and message adapter

configuration file FilterMode

statement

114 Customization Guide

Broken connection retry interval 120 seconds

Alert adapter and message adapter

configuration file RetryInterval

statement

Console event forwarding debug

mode

NO

Alert adapter and message adapter

configuration file TestMode statement

Event receiver PPI name NETVALRT

Event receiver configuration file

NetViewAlertReceiver statement

Event receiver port number 0

Event receiver configuration file

PortNumber statement

Enable PortMapper for the event

receiver

YES

Event receiver configuration file

UsePortmapper statement

Alert-to-trap SNMP agent IP location loopback

Alert-to-trap service configuration file

Hostname statement

Alert-to-trap community name public

Alert-to-trap service configuration file

Community statement

Alert-to-trap Enterprise Object ID 1.3.6.1.4.1.1.1588.1.3

Alert-to-trap service configuration file

Enterpriseoid statement

Trap-to-alert PPI name NETVALRT

Trap-to-alert service configuration file

NetViewAlertReceiver statement

Trap-to-alert port number 162

Trap-to-alert service configuration file

PortNumber statement

Customizing the Event/Automation Startup Parameters

Startup parameters can be specified for the IHSAEVNT startup procedure if you

are starting the E/AS from the MVS system console, or on the UNIX System

Services command line for the IHSAC000 command. Startup parameters follow

two general formats:

parameter=value

-option[value]

Either format can be used from either startup environment unless otherwise noted

below. However, in order to pass the option/value format to the IHSAEVNT

startup procedure the list of options and values must be encoded into a single

parameter/value format. The IHSAEVNT startup procedure provides the following

parameter to accomplish this:

OELINE

An example of using the OELINE parameter to pass option/value format startup

parameters to the IHSAEVNT startup procedure follows:

s IHSAEVNT,OELINE=’-opt1 value1 -opt2 value2...’

Use single quotes to surround the options and values passed with the OELINE

parameter.

The option/value format is a case-sensitive format. Ensure you specify the

following options exactly as they are described. Values are not translated to

uppercase. For some options, only the option is specified. There is no

corresponding value associated with the option.

The startup parameters are:

Chapter 8. Customizing the Event/Automation Service 115

INITFILE=file or -i file

This startup parameter specifies the name of the global initialization file in

file. If you use the INITFILE=file format, the file is a 1–8 character PDS

member name that is associated with the IHSSMP3 data set definition from

the IHSAEVNT startup procedure. This format is not valid when starting

the E/AS from the UNIX System Services command line. If you use the -i

file format, the file is a full MVS data set or HFS path and file name.

Surround MVS data set names with single quotes to make them

fully-qualified data sets. For example:

INITFILE=IHSAINIT

-i ’NETVIEW.V5R2M0.SCNMUXCL(IHSAINIT)’

-i /etc/netview/global_init.conf

MSGCFG=file or -m file

This startup parameter specifies the name of the message adapter

configuration file in file. If you use the MSGCFG=file format, the file is a

1–8 character PDS member name that is associated with the IHSSMP3 data

set definition from the IHSAEVNT startup procedure. This format is not

allowed when starting the E/AS from the UNIX System Services command

line. If you use the -m file format, the file is a full MVS data set or HFS

path and file name. Surround MVS data set names with single quotes to

make them fully-qualified data sets. For example:

MSGCFG=IHSAMCFG

-m ’NETVIEW.V5R2M0.SCNMUXCL(IHSAMCFG)’

-m /etc/netview/message_adpt.conf

ALRTCFG=file or -a file

This startup parameter specifies the name of the alert adapter

configuration file in file. If you use the ALRTCFG=file format, the file is a

1–8 character PDS member name that is associated with the IHSSMP3 data

set definition from the IHSAEVNT startup procedure. This format is not

allowed when starting the E/AS from the UNIX System Services command

line. If you use the -a file format, the file is a full MVS data set or HFS path

and file name. Surround MVS data set names with single quotes to make

them fully-qualified data sets. For example:

ALRTCFG=IHSAACFG

-a ’NETVIEW.V5R2M0.SCNMUXCL(IHSAACFG)’

-a /etc/netview/alert_adpt.conf

ALRTTCFG=file or -a file

This startup parameter specifies the name of the alert-to-trap service

configuration file in file. If you use the ALRTTCFG=file format, the file is a

1–8 character PDS member name that is associated with the IHSSMP3 data

set definition from the IHSAEVNT startup procedure. This format is not

allowed when starting the E/AS from the UNIX System Services command

line. If you use the -a file format, the file is a full MVS data set or HFS path

and file name. Surround MVS data set names with single quotes to make

them fully-qualified data sets. For example:

ALRTTCFG=IHSAATCF

-l ’NETVIEW.V5R2M0.SCNMUXCL(IHSAATCF)’

-l /etc/netview/alert_trap.conf

TALRTCFG=file or -t file

This startup parameter specifies the name of the trap-to-alert service

configuration file in file. If you use the TALRTCFG=file format, the file is a

1–8 character PDS member name that is associated with the IHSSMP3 data

set definition from the IHSAEVNT startup procedure. This format is not

allowed when starting the E/AS from the UNIX System Services command

line. If you use the -t file format, the file is a full MVS data set or HFS path

116 Customization Guide

and file name. Surround MVS data set names with single quotes to make

them fully-qualified data sets. For example:

TALRTCFG=IHSATCFG

-t ’NETVIEW.V5R2M0.SCNMUXCL(IHSATCFG)’

-t /etc/netview/trap_alert.conf

ERCVCFG=file or -e file

This startup parameter specifies the name of the event receiver

configuration file in file. If you use the ERCVCFG=file format, the file is a

1–8 character PDS member name that is associated with the IHSSMP3 data

set definition from the IHSAEVNT startup procedure. This format is not

allowed when starting the E/AS from the UNIX System Services command

line. If you use the -e file format, the file is a full MVS data set or HFS path

and file name. Surround MVS data set names with single quotes to make

them fully-qualified data sets. For example:

ERCVCFG=IHSAECFG

-e ’NETVIEW.V5R2M0.SCNMUXCL(IHSAECFG)’

-e /etc/netview/event_rcv.conf

PPI=ppiname or -p ppiname

This startup parameter specifies the name of the E/AS PPI mailbox in

ppiname. For example:

PPI=IHSATEC

-p IHSATEC

OUTSIZE=size or -O size

This startup parameter enables output log wrapping and specifies the

maximum size of the output log file, in kilobytes. If size is specified as 0,

output log wrapping is disabled. For more information on E/AS output,

refer to “Event/Automation Service Output” on page 118.

OUTSIZE=0

-O 0

-M msgfile

This startup parameter specifies the location of the E/AS messages file.

msgfile specifies a full MVS data set or HFS path and filename. Surround

MVS data set names with single quotes to make them fully qualified data

sets. For example:

-M ’NETVIEW.V5R2M0.SCNMUXMS(IHSAMSG1)’

-M /usr/lpp/netview/msg/C/ihsamsg1

-P This startup parameter is not allowed when starting the E/AS from the

IHSAEVNT startup procedure. It is used to disable the forwarding of MVS

system console messages to the UNIX System Services command shell if

the E/AS was started under the UNIX System Services command shell. By

default, a message that is issued to the MVS system console is also issued

at the UNIX System Services command shell.

-E path

This startup parameter is not allowed when starting the E/AS from the

IHSAEVNT startup procedure. This startup parameter specifies the HFS

path of trace/error log files. path specifies an HFS path. For example:

-E /tmp

Customizing the Event/Automation Service Configuration Files

The E/AS uses six configuration files. These files and their default names are:

v The global initialization file

IHSAINIT or /etc/netview/global_init.conf

Chapter 8. Customizing the Event/Automation Service 117

v The alert adapter configuration file

IHSAACFG or /etc/netview/alert_adpt.conf

v The alert-to-trap service configuration file

IHSAATCF or /etc/netview/alert_trap.conf

v The trap-to-alert service configuration file

IHSATCFG or /etc/netview/trap_alert_trap.conf

v The message adapter configuration file

IHSAMCFG or /etc/netview/message_adpt.conf

v The event receiver configuration file

IHSAECFG or /etc/netview/event_rcv.conf

The global initialization file is used to change configurable settings that are

required by all five services. Each of the other configuration files are used to

change configurable settings that are specific to the services. The statements within

these files must all be contained on one line. Each of these files can have

comments. Comment statements begin with the pound sign (#).

If the E/AS is started from the IHSAEVNT startup procedure, by default the

8–character PDS name specified is used to locate the file. The file must be in a data

set specified by the IHSSMP3 data set definition statement from the IHSAEVNT

startup procedure. If the E/AS is started from the UNIX System Services command

shell, by default the HFS name specified is used to locate the file.

Every statement in a configuration file can be a comment. If all configuration file

statements are comments, the configuration file will not change any of the

configurable settings. Each of the four configuration files must exist for the E/AS

to properly initialize, even if the file contains nothing but comments. The E/AS

will not initialize if it cannot locate a configuration file.

For more information on the configuration file statements, refer to the IBM Tivoli

NetView for z/OS Administration Reference.

Event/Automation Service Output

All Event/Automation Service (E/AS) output can be sent to one or both of two

destinations: the generalized trace facility (GTF) and the E/AS output logs. By

default, data is sent to the E/AS output logs. The destination of E/AS output can

be changed using the OUTPUT command or the OUTPUT statement in the global

initialization file. Refer to the IBM Tivoli NetView for z/OS Command Reference

Volume 1 and IBM Tivoli NetView for z/OS Administration Reference for more

information.

There is an output log associated with each of the three services, and an output log

associated with the entire E/AS address space. If output log wrapping is disabled,

these output logs are physically represented by one system file. If output log

wrapping is enabled, these output logs are physically represented by two system

files — a primary file and a secondary file.

When wrapping is disabled, all output log data is written to the primary file.

When wrapping is enabled, the wrap size is used to limit the total amount of bytes

that can be written to either the primary or the secondary file. When this wrap size

is exceeded, the current file being used for output log output (either the primary or

secondary file) is closed, and the file that was not previously in use (either the

118 Customization Guide

primary or the secondary) is opened for further logging. Whenever an output log

is opened, all data that was previously in the log is destroyed. Therefore, the

maximum amount of output log data available is 2 times the wrap size (both the

primary and secondary files are full), and the minimum amount of output log data

available is the wrap size (a switch has just occurred to either the primary or

secondary file, destroying all data previously in that file).

For more information on setting output log wrapping, refer to the OUTSIZE

parameter on page117.

Event/Automation Service Output Log Names

When the E/AS is started using the IHSAEVNT startup procedure, the names of

the output logs are defined by the following data set definition statements within

the IHSAEVNT procedure:

v IHSC (primary file) and IHSCS (secondary file) – defines the output log files for

the E/AS address space.

v IHSA (primary file) and IHSAS (secondary file) – defines the output log files for

the alert adapter service.

v IHSM (primary file) and IHSMS (secondary file) – defines the output log files for

the message adapter service.

v IHSE (primary file) and IHSES (secondary file) – defines the output log files for

the event receiver service.

v IHSL (primary file) and IHSLS (secondary file) – defines the output log files for

an alert-to-trap service.

v IHST (primary file) and IHSTS (secondary file) – defines the output log files for

an trap-to-alert service.

If output log wrapping is disabled, the data set definition for the secondary file

need not be present in the IHSAEVNT startup procedure, but it is a good practice

to leave it in. The data set definition for the primary file must always be present.

By default, the output log files are set to the IHSAEVNT jobs SYSOUT data set. If

SYSOUT data sets are used for the output log files, output log wrapping is

disabled. If you want to enable output log wrapping, you must change these data

set definitions to reference an MVS sequential data set or HFS file.

Note: There is no restriction placed on the type of file that you specify in the data

set definition statements in the IHSAEVNT startup procedure. However, it is

recommended that you do not define a PDS member as an output log file

due to synchronization problems that may occur when trying to write data

to the PDS member. You also should use a different file for each data set

definition statement.

Unless you have been instructed to run with tracing enabled by a Tivoli

service representative, it is recommended that you use the default SYSOUT

data sets that are specified in the sample IHSAEVNT startup procedure and

do not enable output log wrapping.

When the E/AS is started using IHSAC000 in the UNIX System Services command

shell, the names of the output log files are defined as follows:

v The files must be HFS files. By default, the path of the files is /tmp. This path

can be changed using the -E startup option. Refer to this option on page 117.

Chapter 8. Customizing the Event/Automation Service 119

v controlp.log (primary file) and controls.log (secondary file) are the names of the

output log files for the E/AS address space. These names cannot be changed.

v alertp.log (primary file) and alerts.log (secondary file) are the names of the

output log files for the alert adapter service. These names cannot be changed.

v alrttrpp.log (primary file) and alrttrps.log (secondary file) are output error log

files for the alert-to-trap adapter service.

v trapalrtp.log (primary file) and trapalrts.log (secondary file) are output error log

files for the trap-to-alert service.

v messagep.log (primary file) and messages.log (secondary file) are the names of

the output log files for the message adapter service. These names cannot be

changed.

v eventrcvp.log (primary file) and eventrcvs.log (secondary file) are the names of

the output log files for the event receiver service. These names cannot be

changed.

The E/AS creates these output log files if they do not exist.

Note: Unless you have been instructed to run with tracing enabled by a Tivoli

service representative, it is recommended that you do not enable output log

wrapping.

Types of Event/Automation Service Output Data

The E/AS generates two types of output data: trace data and error data.

Trace data is only generated if tracing is enabled. By default, tracing is disabled. To

change trace settings, refer to the IBM Tivoli NetView for z/OS Command Reference

Volume 1 for information on the TRACE command, and the IBM Tivoli NetView for

z/OS Administration Reference for information on the global initialization file

TRACE statement.

In general, tracing should only be used if you are requested to do so by a Tivoli

service representative.

Error data is composed of MVS system console messages and output log only

messages. In general, any error condition detected by the E/AS results in an MVS

console message. This console message is also written to E/AS output. To aid in

problem determination, additional messages may also be written to E/AS output.

These output log only messages that were not issued to the MVS system console

may give more detail concerning the problem.

The combination of system console and output log only messages should allow

you to resolve most E/AS problems without the aid of a Tivoli service

representative.

Not all MVS console messages describe error conditions. There are a number of

informational messages that are also issued by the E/AS and sent to E/AS output

logs.

Format of Event/Automation Service Output Data

When an output log file is initially opened, the first entry in the output log file is

composed of the name of the output file followed by a date/time string in the

format:

 day month date time year

120 Customization Guide

The following example shows the header for the message adapter service primary

output log file, assuming that the E/AS was started from the IHSAEVNT startup

procedure:

IHSM Fri Feb 20 10:45:55 1998

All other E/AS output data is composed of a header followed by the specific data.

The header is composed of:

v A date/time string in the format:

day month date time year

v The module name of the module where the message was issued

v The line number within the module where the message was issued

v The type of message, which can be one of the following:
v LOW - Specifies this message is issued if the LOW or higher level of tracing has

been enabled.

v NORMAL - Specifies this message is issued if the NORMAL or higher level of

tracing has been enabled.

v VERBOSE - Specifies this message is issued if the VERBOSE level of tracing has

been enabled.

v CONSMSG - Specifies this is an MVS console message.

v LOGONLY - Species this is a message that accompanies an MVS console

message, but is issued only to E/AS output.

v IP - Specifies this message is issued if IP tracing has been enabled.

An example of an E/AS output entry follows:

 -----date/time-------- module line

| | | | |

Fri Feb 20 10:45:55 1998 IHSAEASO:2016

 msgtype ->specific data

 | |

 CONSMSG: IHS0075I Event/AutomationService started

Subtask initialization is in progress for IHSATEC

In this example, the console message IHS0075I was issued from the reported E/AS

module at the specified time and date.

Note: Module and line numbers are for use by a Tivoli service representative if

additional problem determination is needed.

Customizing Alert and Message Routing from NetView

When NetView is installed, the routing of alert and message data to the

Event/Automation Service is by default disabled. NetView automation table

statements and hardware monitor filter commands are used to enable the routing

of alert and message data to the Event/Automation Service. Refer to the IBM Tivoli

NetView for z/OS Automation Guide for complete information on enabling and

customizing the routing of alerts and messages from NetView to the E/AS.

Running More Than One Event/Automation Service

Multiple E/AS address spaces can be active at the same time. In most cases, you

only need one E/AS; however, you might need more than one for any of the

following reasons. You want:

v A subset of alerts or messages to be translated and sent to a different Tivoli

Enterprise Console server.

Chapter 8. Customizing the Event/Automation Service 121

v Alerts or messages to be translated and sent to more than one console server.

v A subset of console events to be translated and sent to a different NetView alert

receiver.

v Console events to be translated and sent to more than one NetView alert

receiver.

If you run more than one E/AS, the E/AS PPI mailbox name must be unique for

each. All other configurable settings can be shared between the E/AS invocations.

However, you should consider changing the following configurable settings

between each E/AS invocation:

v If you use more than one event receiver service, only one should register with

the PortMapper. Others should specify a port number and disable the use of

PortMapper. If more than one event receiver attempts to use the PortMapper,

only the last event receiver to access PortMapper will actually be registered; all

other registrations for the other event receivers will be lost. A warning message

is written to the MVS system console when the event receiver PortMapper

registration is overwritten.

v The E/AS output log files should be unique for each E/AS invocation.

Otherwise, data from one E/AS will be interleaved in the same output log file as

data from another E/AS. If you are using the IHSAEVNT startup procedure to

execute the E/AS, and the output log files are to SYSOUT data sets, then these

data sets are automatically unique for each E/AS invocation.

Advanced Customization - Translating Data

In addition to the configuration files that the E/AS uses to define operational

characteristics, each E/AS service uses a translation file that contains a set of rules

that tell the service how to translate the incoming data into a Tivoli Enterprise

Console event or a SNMP trap. Each translation file is a text-readable file that can

be customized.

The translation files used by the services of the E/AS have two different formats.

The alert adapter, alert-to-trap, trap-to-alert and event receiver services use a class

definition statement (CDS) translation file. The message adapter service uses a

message format translation file.

To customize these translation files, you should have an understanding of the

format of console events, SNMP traps, or both. For more information about console

events, refer to the Tivoli Enterprise Console User’s Guide.

For additional information on SNMP traps, refer to the appropriate z/OS

documentation for SNMP agent.

Class Definition Statement Files

The class definition statement (CDS) file defines how to construct Tivoli Enterprise

Console events from the information that is sent by a data source. For the alert

adapter service and the alert-to-trap service, the data source is NetView. For the

event receiver service, the data source is a Tivoli Enterprise Console server. For the

trap-to-alert service, the data source is an SNMP trap manager. The statements in

this file are referred to as class definition statements (CDS’s). Class definition

statements are rules that enable the service to map the incoming data that it

receives to a console event.

122 Customization Guide

Note: The event receiver service, alert-to-trap service, and trap-to-alert service will

further process the console event that is produced using these class

definition statements to turn it into an alert or SNMP trap. Refer to “Event

Receiver Post-CDS Processing” on page 140 for more information on

creating alerts from console servers. Refer to “Alert-to-Trap Post-CDS

Processing” on page 165 for more information on creating traps from alerts.

Refer to “Trap-to-Alert Post-CDS Processing” on page 157 for more

information on creating alerts from SNMP traps.

A CDS file is composed of one or more CDS’s. Each CDS can include a

SELECT, FETCH and a MAP segment that specify the rules for mapping

data into a Tivoli Enterprise Console event. These rules allow for selecting

an event class based on the incoming data, fetching additional data for

creating the console event, and mapping the information collected from the

incoming event into event attributes for the outgoing console event.

A CDS has this general format:

CLASS <class_name> SELECT <select_statements> FETCH <fetch_statements>

 MAP <map_statements> END

The CDS file also supports comment lines beginning with the comment sign

(#).

The keywords in a CDS provide the following kinds of information:

CLASS

The <class_name> defines the class name that will be used on the

outgoing console event if the incoming data matches this CDS.

SELECT

Consists of one or more <select_statement> entries that incoming data

must satisfy to match, or select, this CDS. Select statements are

evaluated in the order that they appear in the SELECT segment. If

all of the <select_statements> of a particular CDS are satisfied, then

the incoming data matches the corresponding CDS. Otherwise, the

adapter tries to match the incoming data with the next CDS. If the

incoming data cannot be matched with any CDS, it is discarded.

FETCH

Consists of zero or more <fetch_statement> entries that are used to

retrieve additional pieces of data from the incoming data in order to

build the event attributes in the map segment. The FETCH segment

is used to retrieve data not retrieved by the SELECT segment, or to

change the data that was retrieved by the SELECT segment.

MAP Consists of zero or more <map_statement> entries that specify how to

build the event attributes of the Tivoli Enterprise Console event

instance using the service’s default data, user-defined constant data

and pieces of data retrieved in the SELECT and FETCH segments.

For the alert adapter service, each class of event defined in the .baroc file of

the service on an event server must match one or more CDS in the CDS file.

The CDSs specify how to map incoming data to the class and event

attributes of the outgoing Tivoli Enterprise Console event instance. If you

change or add classes or event attributes in the CDS file, you must make a

corresponding change to the .baroc file on the event server.

Chapter 8. Customizing the Event/Automation Service 123

For the event receiver service, the outgoing Tivoli Enterprise Console event

is never sent to an event server; it is a pseudo-event that is processed

further to create an alert. Therefore, there is no corresponding .baroc file on

an event server for any Tivoli Enterprise Console events created from the

event receiver’s CDS file.

Each CDS is evaluated in the order it appears in the CDS file. An incoming

event is mapped to the class specified by the first CDS whose SELECT

segment is evaluated successfully. When more than one CDS is provided for

a given class of event, the CDS with the most restrictive SELECT segment

should appear first in the CDS file.

If the <class_name> is equal to *DISCARD*, any incoming data matching

the SELECT segment should be discarded. Note that data will also be

discarded if it does not match any CDS. However, if a given type of

incoming data must always be discarded, it is more efficient to define a

DISCARD statement and put it at the beginning of the CDS file rather

than letting the adapter evaluate all CDS’s before finally discarding the

event.

Encoding Incoming Event Data

Incoming event data is encoded by the service into name/value pairs. Name/value

pairs are also referred to as attributes. For any incoming event, all of the attributes

are placed in a list that is then used in the SELECT, FETCH and MAP segments.

The service selects which, if not all, of the incoming data to encode into

name/value pairs, see the specific service encoding discussion later in this section.

The name part of the attribute is a text string. There are two types of names -

generic and keyword.

Generic names are text strings created by the services. A service may create these

names internally, or it may create them from information provided in the incoming

raw data; in either case, the method used by the service to create attribute names

will be discussed with the specific service encoding later in this chapter.

Keywords have the format $keyword. Data that is commonly provided in the

incoming datastream to the service is usually coded into keywords rather than

generic names. The actual keyword name is never derived from the incoming data,

but rather is defined by the service.

The main difference between keywords and generic names is how the names are

used in processing the CDS file. Keywords provide faster data lookup during CDS

file processing. Otherwise, keywords and generic names are nothing more than

data tags, with keywords prefaced with $.

The value part of the attribute is also a text string. Again, the service will assign

this text string based on data in the raw event.

Alert Adapter Service and Alert-to-Trap Service Data Encoding

The alert adapter and alert-to-trap service uses keyword attributes exclusively for

their data encoding. The following table lists each of the keyword attribute names

used and how the value field is assigned from the incoming alert data.

 Attribute name Description

124 Customization Guide

$ALERT_CDPT

A 2-byte hexadecimal value taken from the

alert description code field of the generic

alert data subvector, or the resolution

description code field of the resolution data

subvector.

$ORIGIN

A character string with the name/type

hierarchy pairs from the Hierarchy Name

List or Hierarchy/Resource List subvectors.

The string contains the hierarchy in the

form:

resnam1/typ1,resnam2/typ2,resnam3/typ3,

resnam4/typ4,resnam5/typ5

Only the number of pairs in the actual

subvector are used.

$SUB_ORIGIN

A character string with the last pair in the

name/type hierarchy pair list from the

Hierarchy Name List or Hierarchy/Resource

List subvectors. The string is in the form:

resnamx/typx

where x is the number of the last pair in the

list.

$HOSTNAME

The netid.nau node name of the SNA node

where the alert originated. Could be a

NetView/390 node, an AS/400® node, etc.

$ADAPTER_HOST

The IP name of the host where the

NetView/390 alert adapter resides.

$DATE

The date when the alert was received by the

NetView/390 alert adapter. In format: MMM

HH:MM:SS, e.g. OCT 10 12:08:30.

$SEVERITY

FATAL, CRITICAL, etc. The alert type field

from the Generic Alert Data subvector, or

the event type, is used to determine the

severity. Refer to Table 18 on page 127.

$MSG

The Long Error Description:Long Probable

Cause message that describes the problem.

This message is similar to the ALERT

DESCRIPTION:PROBABLE CAUSE message

displayed on the NPDA ALERTS-DYNAMIC

panel.

$ADAPTER_HOST_SNANODE

The netid.domainid node name of the

NetView that sent the alert to the

NetView/390 alert adapter.

$EVENT_TYPE

For example, PERMANENT, or

TEMPORARY. For Generic Alerts, it is

obtained by inspecting the Alert Type byte

of Generic Alert Data subvector. It matches

the EVENT TYPE displayed on the NPDA

EVENT DETAIL panel.

Chapter 8. Customizing the Event/Automation Service 125

$ARCH_TYPE

GENERIC_ALERT,

GENERIC_RESOLUTION, or

NONGENERIC_ALERT. NMVT Alert Major

Vectors contain a Generic Alert Data

subvector are GENERIC_ALERTs. NMVT

Resolution Major Vectors are

GENERIC_RESOLUTIONs. All other alerts

are NONGENERIC_ALERTs.

$PRODUCT_ID

The hardware or software product set

identifier (PSID) of the alert or event sender.

This can be 4, 5, 7, or 9 characters. Pertains

to all generic alerts and some non-generic

alerts.

$ALERT_ID

An 8-character hexadecimal value assigned

by the sender to designate an individual

alert condition. The value will always be

00000000 for resolution alerts. Pertains only

to generic alerts (including resolutions).

$BLOCK_ID

The code used to identify the IBM hardware

or software associated with the alert. See the

NetView Resource Alerts Reference manual.

Pertains only to non-generic alerts.

$ACTION_CODE

A code that provides an index to predefined

screens. Pertains only to non-generic alerts.

For non-generic alerts, the combination of

the block id and action code uniquely

identify the sending product.

$SELF_DEF_MSG

Text extracted from Self-defining Text

Message Sv31.

$EVENT_CORREL

Correlators extracted from MSU Correlation

Sv47. These correlators correlate alerts to

other alerts. That is, you may have two or

more alerts that pertain to the same

underlying problem and such alerts are

correlated by Sv47. The tecad_snaevent.rls

file on the Tivoli Enterprise Console server

contains rules which discard alerts that have

already been reported.

$INCIDENT_CORREL

Correlators extracted from Incident

Identification subvectors. These correlators

correlate alerts to resolutions. The

tecad_snaevent.rls file on the Tivoli

Enterprise Console server contains rules

which CLOSE all correlated alerts when a

resolution is received.

$ADAPTER_CORREL

A correlator that has meaning only to the

alert adapter.

$DETAILED_DATA Always assigned the string ″[N/A]″.

$CAUSES Always assigned the string ″[N/A]″.

$ACTIONS Always assigned the string ″[N/A]″.

Non-keyword attributes can also be assigned by users in the NetView address

space. Refer to IBM Tivoli NetView for z/OS Automation Guide for more information

on how to customize alerts forwarded from NetView. Using this method, any

126 Customization Guide

attribute name/value pair can be created and used by the CDS file process. The

alert adapter and trap-to-alert service do not use generic attributes other than

when they are assigned within NetView.

The value for the severity event attribute is determined by mapping an alert type

(or event type) to a severity. The table below shows this mapping. The

hexadecimal byte is the alert type field from the generic alert data subvector.

 Table 18. Alert Types and Severities

Alert Type Severity

0x01, PERMANENT CRITICAL

0x02, TEMPORARY HARMLESS

0x03, PERFORMANCE WARNING

0x04, INTERVENTION REQ’D CRITICAL

0xNN, CUSTOMER APPLICATION MINOR

0xNN, END USER GENERATED MINOR

0xNN, SUMMARY HARMLESS

0xNN, INTENSIVE MODE REC HARMLESS

0x09, AVAILABILITY CRITICAL

0x0A, NOTIFICATION WARNING

0x0B, ENVIRONMENT CRITICAL

0x0C, INSTALLATION WARNING

0x0D, OPERATION/PROCEDURE WARNING

0x0E, SECURITY CRITICAL

0x0F, DELAYED RECOVERED WARNING

0x10, PERMANENT AFFECTED MINOR

0x11, IMPENDING PROBLEM WARNING

0x12, UNKNOWN UNKNOWN

0xNN, HELD MINOR

0x14, BYPASSED WARNING

0x15, REDUNDANCY LOST WARNING

0x16, SITUATION WARNING

0xNN, RESENT ALERT MINOR

0xNN, RESOLVED PROBLEM HARMLESS

0xNN, UNSUPPORTED TYPE UNKNOWN

Alert-to-Trap Service Data Encoding

The alert-to-trap service constructs enterprise traps (type 6). The CDS file enables

customization of the specific code field in the trap. This is done by supplying a

value for the SPECIFIC keyword in the MAP sections of the CDS file.

The basic approach of the alert-to-trap service is to construct Tivoli Enterprise

Console event keyword/value pairs from the alert and then map the

keyword/value pairs (other than SPECIFIC) into SNMP OCTET strings to be

included as variable bind data in the resulting trap. Both the keyword and the

value are included in the resulting OCTET string.

Chapter 8. Customizing the Event/Automation Service 127

The alert-to-trap service has access to the alert-adapters keyword attributes, and

these can be used in SELECT, MAP and FETCH statements. However, not all alert

adapter attributes are applicable to SNMP traps.

The CLASS names in class definition statements are not used in the traps built by

the alert-to-trap servicer. However, the CLASS name is still required to satisfy CDS

syntax rules, and it is useful when you document the trap you are constructing.

Trap-to-Alert Service Data Encoding

The trap-to-alert service receives an SNMP trap as its incoming data. This data is

encoded into both keyword attributes and generic attributes.

The following table lists the keyword attributes created by the trap-to-alert service.

 Attribute name Description

$ORIGIN_ADDR

The value is a string containing the IP

address from which the trap came. Note that

when the sample datagram forwarding

daemon is used, the value is the internet

address of the host in which the daemon is

running.

$ORIGIN_PORT

The value is a string containing the number

of the port (in decimal) at the origin address

from which the trap came. Note that when

the sample datagram forwarding daemon is

used, the value is the number of the port

over which the daemon forwarded the trap.

$SNMP_VERSION

The value is a string containing the number

(in decimal) indicating which SNMP version

was implemented at the agent that sent the

trap. This determines how the trap was

formatted. The value for SNMPv1 is ″0″.

The following table lists the generic attributes created by the trap-to-alert service

from the SNMP trap data that is not a variable binding. All data is converted to a

character string before assigning it to the generic attribute name.

 Attribute name Description

community

The value of the SNMP trap community

field.

enterpriseOID

The value of the SNMP trap enterpriseOID

field.

agent_address

The value of the SNMP trap agent address

field.

generic_trap

The value of the SNMP trap generic trap

field.

specific_trap

The value of the SNMP trap specific trap

field.

timestamp The value of the SNMP trap timestamp field.

The variable binding data is created directly from the variable binding data. The

variable binding name becomes the name of the generic attribute, and the variable

binding data is converted to a character string if it is not already a character string

128 Customization Guide

|
|

and assigned to the generic attribute. When more than one variable binding within

an SNMP trap contains the same name, the name and index is appended to the

name to create the generic attribute name. For example, if the variable binding

name

1.3.6.1.4.1.2.2.1.3.1.0

occurred 3 times within the same SNMP trap, the generic attribute names that are

created as a result would be as follows:

1.3.6.1.4.1.2.2.1.3.1.0

1.3.6.1.4.1.2.2.1.3.1.0<1>

1.3.6.1.4.1.2.2.1.3.1.0<2>

Event Receiver Service Data Encoding

The event receiver service receives a Tivoli Enterprise Console event as its

incoming data. This data is encoded into both keyword attributes and generic

attributes. This encoding is very straightforward since the data is already in the

name/value form of an attribute. Every event attribute name in the incoming

console event becomes the name of a generic attribute in the attribute list, and the

corresponding event attribute value becomes the value of the attribute. The

className of the event is encoded as the value of the $CLASSNAME keyword

attribute. As such, the event receiver creates one keyword attribute,

$CLASSNAME, and as many generic attributes as there are event attribute/value

pairs in the incoming console event.

SELECT Segment of a Class Definition Statement

The SELECT segment of a CDS is composed of one or more <select_statement>

entries. Each <select_statement> entry has the following format:

 <n>: ATTR(<a_op>, <a_op_value>),

 VALUE(<v_op>, <v_op_value>);

A <select_statement> is satisfied if an attribute is found in the list of attributes

provided by the service that fulfills the conditions specified by the ATTR and

VALUE expressions of the <select_statement>. An attribute must be found for each

<select_statement> for the SELECT segment to be satisfied. If a SELECT segment is

not satisfied, the entire CDS is ignored and processing continues with the next

CDS in the CDS file.

<n> Is the identification number of the <select_statement>. n can be any valid

integer. Each <select_statement> must have a unique identification number;

this identification number is used in further processing of the CDS.

ATTR

Specifies the name of an attribute, in <a_op_value> and a modifying

condition on the attribute name in <a_op>. The ATTR expression is

mandatory in the SELECT statement. The list of attributes created by the

service from the incoming data are searched until an attribute is found that

has a name field which matches the condition expressed by the ATTR

expression.

<a_op>

Modifies the ATTR name and can have one of the following values:

= Specifies that the attribute name in <a_op_value> must match the

name of an attribute in the attribute list.

Chapter 8. Customizing the Event/Automation Service 129

PREFIX

Specifies that the attribute name in <a_op_value> must be a prefix

of the name of an attribute in the attribute list.

SUFFIX

Specifies that the attribute name in <a_op_value> must be a suffix

of the name of an attribute in the attribute list.

<a_op_value>

Specifies the name of an attribute. The attribute list is searched sequentially

and the ATTR <a_op> expression is applied to each attribute name field

until a matching attribute is found.

 By default, <a_op_value> is a string. However, <a_op_value> can also be a

variable. Variables are described below.

 When specified as a string, <a_op_value> must be enclosed in double

quotes (″) if the string contains a blank character or if it is all digits (0

through 9). The following examples show possible <a_op_value> strings:

hello

$ORIGIN

"hello, world"

"12"

When specified as a variable, <a_op_value> can contain any of these types

of variables:

Keyword

A keyword provided by the event adapter, for example, $ORIGIN.

Name Name variables are assigned the value of the name field of an

attribute that has satisfied a previous <select_statement>ATTR

expression. A name variable is specified as $Nn, where n is the

number of the <select_statement> that the desired attribute satisfied

(for example, $N2).

Value Value variables are assigned the value of the value field of an

attribute that has satisfied a previous <select_statement> VALUE

expression. A value variable is specified as $Vn, where n is the

number of the <select_statement> that the desired attribute satisfied

(for example, $V5).

 The following example of an ATTR expression looks for a generic name that is

equal to user1. If the service has provided an attribute named user1, the ATTR

expression will be satisfied.

ATTR(=,"user1")

The following example of an ATTR expression looks for a keyword that is equal to

$ORIGIN. If the service has provided an attribute named $ORIGIN, the ATTR

expression will be satisfied.

ATTR(=,$ORIGIN)

VALUE

This expression is optional. For the attribute in the attribute list that

matches the associated ATTR expression, the value of the attribute is

subjected to a match based on the information in the VALUE expression.

<v_op>

Modifies the VALUE expression and can have one of the following values:

130 Customization Guide

= Specifies that the VALUE expression in <v_op_value> must match

the value of an attribute in the attribute list.

PREFIX

Specifies that the VALUE expression in <v_op_value> must be a

prefix of the value of an attribute in the attribute list.

SUFFIX

Specifies that the VALUE expression in <v_op_value> must be a

suffix of the value of an attribute in the attribute list.

!= Specifies that the VALUE expression in <v_op_value> must not be

equal to the value of an attribute in the attribute list.

<v_op_value>

Specifies the value of an attribute. By default, <v_op_value> is a string.

However, <v_op_value> can also be a variable.

 When specified as a string, <v_op_value> must be enclosed in double

quotes (″) if the string contains a blank character or if it is all digits (0

through 9). The following examples show possible <v_op_value> strings:

hello

$ORIGIN

"hello, world"

"12"

When specified as a variable, <v_op_value> can contain any of these types

of variables:

Keyword

The keyword is assigned a constant value (either a string or a

number), and the keyword can be used to reference the value.

Name Name variables are assigned the value of the name field of an

attribute that has satisfied a previous <select_statement> ATTR

expression. A name variable is specified as $Nn, where n is the

number of the <select_statement> that the desired attribute satisfied

(for example, $N2).

Value Value variables are assigned the value of the value field for an

attribute that has satisfied a previous <select_statement> VALUE

expression. A value variable is specified as $Vn, where n is the

number of the <select_statement> that the desired attribute satisfied

(for example, $V5).

 The following example of a VALUE expression looks for an attribute with a value

that is prefixed with Serial:

VALUE(PREFIX,"Serial")

A valid match for this VALUE expression is Serial1.

SELECT Segment Evaluation

For an entire SELECT segment to be matched, an attribute must be matched for

each of the <select_statement> expressions in that SELECT segment. More than one

attribute in the attribute list may satisfy a <select_statement>. The first one in the

attribute list that satisfies the statement is used for further CDS processing.

If the SELECT segment is satisfied, the class name of the SELECT segment is used

for the outgoing Tivoli Enterprise Console event. Processing of the event continues

Chapter 8. Customizing the Event/Automation Service 131

with the FETCH segment, unless the class is *DISCARD*, in which case the event

is discarded. If the incoming data satisfies no SELECT segment of a CDS in the

CDS file, the incoming data is discarded.

Each time a <select_statement> is evaluated successfully, the two variables $Nn and

$Vn are created. These variables, along with the adapter-provided keywords, can

be used in any subsequent SELECT, FETCH or MAP segment.

FETCH Segment of a Class Definition Statement

The SELECT segment of a CDS retrieves attribute names and values from the

incoming data, but it does not allow for changes to the selected pieces of

information. In some circumstances, it is necessary to extract a substring out of an

attribute value or to provide user-defined variables. The FETCH segment in a CDS

allows you to do this.

The FETCH segment is composed of one or more <fetch_statement> expressions.

Each <fetch_statement> has the following format:

<n>: <expression>

where

<n> Is an identification number of the <fetch_statement>. <n> can be any valid

integer. Each <fetch_statement> must have a unique identification number.

A <fetch_statement> results in the value of <expression> being assigned to a

new variable, $Fn, where n is the identification number of the

<fetch_statement>.

<expression>

Is one of the following:

v A string

v Any output value from the SELECT segment (such as adapter-provided

keywords and SELECT segment variables.

v Any output from a previous <fetch_statement>

v A substring with any combination of strings, SELECT segment output,

and <fetch_statement> output.

An example of a FETCH segment using substrings is:

1: SUBST ($V2, 1, 5);

This statement uses the value of the variable $V2, as assigned from

<select_statement> number 2, and assigns the substring represented by the first 4

characters of $V2 to the variable $F1.

The output of the FETCH segment is the set of fetch variables $Fn.

MAP Segment of a Class Definition Statement

The MAP segment of a CDS creates the event attributes and associated values that

will be put in the outgoing Tivoli Enterprise Console event.

The MAP segment is composed of one or more <map_statement> expressions. Each

<map_statement> has one of the following formats:

<slot name> = <string>;

<slot name> = <variable>;

<slot name> = PRINTF(<format_string>, <var1>, ..., <varn>);

132 Customization Guide

<slot_name>

The name of any event attribute. For the alert adapter service, this should

be an event attribute that corresponds to an event attribute in the service’s

.baroc file on an event server. For the event receiver service, this should be

an event attribute that is allowed by the event receivers post-CDS file

processing.

<string>

Any character string.

<variable>

Any variable passed to the MAP segment from the SELECT or FETCH

segments, such as adapter-defined keywords or segment variables.

PRINTF

Specifies a format that allows the value of the event attribute to be

formatted using a C-style printf() format string. This format string

currently supports only the %s format specifier.

<var> Can contain either a <string> or a <variable>.

 Here is an example of a MAP segment:

MAP

 origin = $V2;

 hostname = $HOSTNAME;

 msg = PRINTF("The origin is %s", $V2);

In this example, the origin event attribute would be given the value of the SELECT

segment variable $V2. The hostname event attribute would be given the value of

the $HOSTNAME keyword. Assuming the value of the variable $V2 is

NV390SP/SP, the msg event attribute would be given the value ″The origin is

NV390SP/SP″ (the double quotes are not included in the value).

The output of the map process is a list of event attribute name/value pairs that are

used to generate the outgoing Tivoli Enterprise Console event that will either be

sent to the event server or used for post CDS-file processing.

MAP_DEFAULT Section of the Class Definition Statement Files

Some event attributes, like source and hostname, will probably have a constant

value for all the Tivoli Enterprise Console events generated by a given service. To

avoid repeating identical map statements in many CDS’s, the CDS file supports a

MAP_DEFAULT section. This section defines event attribute name/value pairs for

all CDS’s in the CDS file. The event attributes that are defined in this global

definition section can be overridden by specific definitions in a CDS.

Here is an example of a MAP_DEFAULT section:

MAP_DEFAULT

 origin = $ORIGIN;

 sub_origin = $SUB_ORIGIN;

 msg = $MSG;

END

In some cases, you may want to put CDSs into more than one CDS file and have

them all be used by a service. To enable this, an extension to normal CDS file

processing has been added for the E/AS services. The %INCLUDE statement

allows additional CDS files to be embedded within the current CDS file. The

%INCLUDE keyword cannot be preceded by blank characters, and it must be

followed by a separator of one blank character. Following the separator is the file

name of the CDS file to be opened. This file name is either a 1 to 8 character PDS

Chapter 8. Customizing the Event/Automation Service 133

member name that is associated with the IHSSMP3 data set definition, or a

complete file name that is preceded by the backslash (’\’) character. The maximum

number of CDS file members that can be opened at the same time is 20; this

represents the maximum number of nested %INCLUDE statements that are valid.

The following example shows the %INCLUDE statement syntax. Assume that the

file named IHSAACD1 contains the single statement:

sub_origin = $SUB_ORIGIN;

In this example:

MAP_DEFAULT //Statements from IHSAACDS

 source = NV390ALT;

 origin = $ORIGIN;

%INCLUDE IHSAACD1 //New file with sub_origin statement

 hostname = $HOSTNAME; //Continuation of IHSAACDS

 adapter_host = $ADAPTER_HOST;

END

For more information about Tivoli Enterprise Console events, refer to the Tivoli

Enterprise Console Adapter’s Guide. For an example of using CDS’s, refer to the

IHSAACDS or IHSAECDS sample shipped with the Event/Automation Service.

These are the default translation files used for the alert adapter and event receiver

services, respectively.

Message Format Files

The FMT file defines how the message adapter service constructs Tivoli Enterprise

Console events from message information that is sent by NetView. The statements

in this file are referred to as format specification statements (FSS). Format

specification statements are rules that allow the service to map the incoming

message data that it collects from NetView to an outgoing console event.

The following sections describe the syntax of the message adapter service’s format

specifications and how format specifications are mapped into events.

Encoding Incoming Event Data

For the message adapter service, the incoming data is a message string. This

message text string is matched against format specifications in the FMT file. The

primary piece of information, therefore, is the message string itself.

Like a CDS file, the job of the FMT file is to allow the user to customize the

outgoing console event based on the incoming message data. This method does not

encode the data into attributes; however, there are certain event attribute names

that receive default information from the incoming message data.

The table below lists each of the default event attribute names and their

corresponding default values. If the value for the event attribute is not actually

present in the incoming data, then the default event attribute value will be the null

string. ANY event attribute that is listed in the map rules portion of a format

specification statement has a default value; if it is not provided in the incoming

data, its default value is the null string (″″).

 Event attribute name Description

origin

The netid.domainid node name of the

NetView where the message originated.

134 Customization Guide

sub_origin

The job number associated with the

message. If a job number is not available for

the message, the value defaults to a null

string (″″).

hostname Same as the origin event attribute.

adapter_host

The IP name of the host where the

Event/Automation Service is running.

date

The date and time that the message was sent

from the NetView automation table. In

format: MMM HH:MM:SS, e.g. OCT 10 12:08:30.

msg_id

The first token of the message. In most

cases, this token is the actual message

identifier.

severity

Inferred from the last character of the

msg_id. The translation of this character to a

value for this event attribute is:

A, E, S CRITICAL

T FATAL

anything else WARNING

msg

The message text, which includes msg_id as

the first token.

adapter_host_snanode

The netid.domainid node name of the

NetView that sent the message to the

Message Adapter service.

multiline_msg

The second and succeeding message lines

from the message. If the message is

contained in one line, the value of

multiline_msg is N/A.

jobname

The jobname associated with the message. If

a jobname is not available for the message,

the value of jobname defaults to a null

string (″″).

Default event attributes and values can also be assigned by users in the NetView

address space. Refer to the IBM Tivoli NetView for z/OS Automation Guide for more

information about customizing messages forwarded from NetView. Using this

method, any attribute name/value pair can be created and used by the FMT file

process.

Format Specifications

The FMT file is made up of 1 or more FSS. An FSS has the following three parts:

v The format header has the keyword FORMAT followed by the class name. This

is optionally followed by the FOLLOWS keyword and a previously defined

FORMAT class name. If the incoming message matches this FSS, the class name

following the FORMAT keyword will be used on the outgoing Tivoli Enterprise

Console event.

v The format content has a format string optionally followed by a list of map

rules. The format string performs a function similar to the SELECT segment of a

CDS file; that is, it matches the incoming message to a particular FSS. The map

rules perform a function similar to the MAP segment in the CDS file; that is,

they assign values to event attributes.

v The END keyword completes the FSS.

Chapter 8. Customizing the Event/Automation Service 135

The format header, the format string, each map rule, and the END keyword must

begin on a new line.

The FOLLOWS relationship is used to enable a specific FSS to be built from more

generic ones. When format B follows format A, B inherits all of the map rules (but

not the format string) from A. Format B can define any additional map rules, but

any map rules redefined by B are not inherited from A. Format B can override

inherited map rules by redefining them.

Messages that are forwarded by NetView typically have a common format

consisting of a message identifier and message-specific text. These message

components can be represented in the format string using a component specifier

notation that is very similar to the C-style printf() notation. This printf() notation

is similar to the notation used in CDS files.

The following format string describes the entire class of messages that are

produced by the NetView automation table:

%s*

Input messages are tokenized into constants and blanks. A constant is any

consecutive string of non-blank characters. Component specifiers allow the

constants and blanks to be grouped into more complex ″tokens″ when trying to

match an FSS against a specific message. The current allowable component

specifiers are:

%lengths Matches one constant in the input message

%lengths* Matches zero or more constants in the input message

%lengths+ Matches one or more constants in the input message

The optional length is a decimal number of any size that truncates the constant if

the actual length is greater than the specifier length. For the specifiers that can

match multiple constants, each constant in the accumulated string is truncated.

Also, the string itself terminates on a constant that is less than the specifier length.

The format string DSI%s %s* is taken from the default message adapter FMT file

shipped with the E/AS, and is used in the following discussion to demonstrate the

usage of format strings.

As an example of matching a message to the DSI%s %s* format specification,

consider the following NetView message:

DSI002I INVALID COMMAND: ’BADCOMMAND’

The component specifiers and matches are as follows:

DSI DSI

%s 002I

%s* INVALID COMMAND:’BADCOMMAND’

The DSI002I message has some constant parts and some variable parts. That is,

certain parts of the message (constant parts) will be the same for any DSI002I

message that is generated. The constant parts of the message are:

DSI002I INVALID COMMAND: ’ ’

The variable part of the message is:

BADCOMMAND

Note that the first constant part of the message goes all the way to the first single

quote (’) in the message. The second single quote is the beginning of the second

136 Customization Guide

constant part of the message, which also happens to be the last character in the

message. The data inside of the single quotes is all variable.

The following message is an example of another DSI002I message with different

variable parts:

DSI002I INVALID COMMAND: ’WORSE COMMAND’

In this case, the variable part is composed of two words and a space -- WORSE

COMMAND.

The format string DSI%s %s* can be specialized for the DSI002I message as

follows:

DSI %s INVALID COMMAND: ’%s*’

Using the DSI002I message above, the component specifiers and matches are as

follows:

DSI DSI

%s 002I

INVALID COMMAND: ’INVALID COMMAND: ’

%s* WORSE COMMAND

’ ’

The blank characters that separate the words of a message must also be present in

the format string. A single space character in the format string will match any

number of blank characters in the message.

Suppose the space between the colon (:) and the quote (’) is deleted in the

specialized DSI002I format string given above:

DSI %s INVALID COMMAND:’%s*’

In this example, the format string would no longer match DSI002I messages.

However, in the following example, the NetView message would match the format

specification, since all consecutive blanks from both the input message and the

format specification are boiled down to a single blank character:

DSI %s INVALID COMMAND: ’%s*’

Care should be taken when using arbitrary length repeater component specifiers

(%s* and %s+). The following format string does not make much sense:

This is not a good format %s* %s*

The first %s* will match everything through the end of the message, and the

second %s* will never match anything. It may appear that this does not matter, but

the importance becomes apparent when map rules are discussed in “Map Rules”

on page 138.

The following format string, however, is meaningful:

This is a good format %s* : %s*

The first %s* will match everything up to the first colon (:), and the second %s*

will match everything through the end of the message.

From the above examples, you can see that you can specialize a generic format to

match a more specific event by either replacing component specifiers with

constants or by restricting the arbitrary length repeater specifiers to a fixed length

by using constants to terminate the specifier.

Chapter 8. Customizing the Event/Automation Service 137

Map Rules

The service translates incoming message data into an event class with event

attribute name/value pairs, and sends this information to an event server. As with

the alert adapter service, a .baroc file at the event server must be present to match

the outgoing Tivoli Enterprise Console events created by the message adapter

service.

The event class is determined by matching an input message to an FSS as

described previously. However, once the class is determined. Values must be

assigned to the event attribute names. These values can come from a variety of

places, such as from the message itself, from default event attributes provided by

the service, or from specifications within the FMT file. Map rules define how event

attributes are assigned values.

The map rule portion of the format string consists of zero or more lines that

contain a .baroc file event attribute name followed by a value specifier. The value

specifiers are one of four types:

v $i , where i indicates the position of a component specifier in a format string.

Each component specifier is numbered from 1 to the maximum number of

component specifiers in the format string. For example, in the specialized format

specification for the DSI002I message given above, the %s* component specifier

would be referred to in the map rules as $2. The value of a $i value specifier,

also referred to as a variable value specifier, is the portion of the input message

that was consumed by the component specifier. These variables are very similar

to the variables output from the SELECT and FETCH segments in the CDS file.

v A constant string. The value of the event attribute is the specified string. If the

string is a single constant, it can be specified without surrounding double quotes

(″). Otherwise, double quotes must be used.

v A PRINTF statement. This mechanism allows you to compose more complex

event attributes from other event attributes. The PRINTF statement consists of

the keyword PRINTF followed by a C-style printf() format string and a list of

event attribute names. The printf() format string currently only supports the %s

conversion specifier. The values of the event attributes that are used in the

PRINTF statement must also have been derived from either the $i value

specification or a constant string value specification. They cannot be derived

from another PRINTF value specification. The value of the argument event

attributes will be used to compose a new constant string according to the

printf() format string. This constant string becomes the value of the event

attribute. This value specifier is very similar to the PRINTF MAP segment

format in the CDS file.

v DEFAULT. This keyword indicates that the adapter should use its internal logic

to derive the value of the indicated event attribute. For example, the incoming

message data contains the hostname (netid.nau) where the message originated. If

the hostname event attribute is therefore set to the value DEFAULT, netid.nau

will be the value of the hostname event attribute. This is similar to the use of

keywords in the alert adapter service.

If the incoming message does not provide a specific value for a slot, the

DEFAULT value is the null string (″″). The DEFAULT value for non-specified

slot names can be overridden. An additional value specifier, delimited with a

colon (:), may follow the DEFAULT value specifier. This value specifier will be

used to provide the DEFAULT value of the slot only if a slot value is not

provided in the incoming message.

Only constant string and $i variable specifiers can be used to provide DEFAULT

overrides.

138 Customization Guide

For example, the following assigns the slot numericslot with the DEFAULT value

from the incoming message:

numericslot DEFAULT : 0

If the incoming message does not contain a value for numericslot, a value of 0 is

assigned rather than a null string.

Note that because DEFAULT is a keyword, a constant map whose value is the

string DEFAULT must be specified in double quotes (″″).

You should specify only one map rule for each .baroc file event attribute in any

one format specification. The map rule can be inherited from a more generic

format specification (using the FOLLOWS keyword), or it can be explicitly defined

on the format specification that directly matches the input message. Since the

service does not have access to the .baroc file, which resides on the event server,

care must be taken to make sure that the format specifications agree with the

corresponding .baroc file definitions. If an event attribute name is misspelled in a

map rule, for example, the service will not report any error and will send the event

to the event server as usual. However, the event will be meaningless to the event

server.

There can be attributes in the incoming message that do not directly correspond to

any .baroc file event attributes. However, the service might need to use these

values to compose PRINTF style constant strings. This data needs to be assigned

to temporary event attributes, which can then be used in the PRINTF value

specification but does not allow the event attribute to be sent over to the event

server as an independent event attribute name/event attribute value pair.

Temporary event attributes are designated with a minus sign (-) immediately

preceding the event attribute name in the map rule. These temporary event

attributes are not .baroc file event attributes. Do not use the minus sign (-) when

referring to the temporary event attribute in the PRINTF specification.

%INCLUDE Statements

The %INCLUDE statement allows additional FMT files to be imbedded within the

current FMT file. The %INCLUDE keyword cannot be preceded by blank

characters, and it must be followed by a separator of one blank character.

Following the separator is the file name of the FMT file to be opened. This file

name is either a 1 to 8 character PDS member name that is associated with the

IHSSMP3 data set definition, or a complete file name that is preceded by the

backslash (’\’) character. The maximum number of FMT file members that can be

opened at the same time is 20; this represents the maximum number of nested

%INCLUDE statements that are allowed.

Format File Example: The following sample will be used to demonstrate the

concepts discussed above; this example was taken (and modified somewhat) from

the message adapter services default message format file (IHSAMFMT):

FORMAT NV390MSG_Event

%s*

source NV390MSG

origin DEFAULT

desctext "This string will be overridden"

END

FORMAT NV390MSG_NetView_NCCF FOLLOWS NV390MSG_Event

DSI%s %s*

sub_source "NetView NCCF"

msgnumber $1

temp1 $2

Chapter 8. Customizing the Event/Automation Service 139

desctext PRINTF("Got a DSI message: %s", temp1)

END

%INCLUDE MOREFMTS

Using this format file, assume that the following message is received by the

service:

DSI002I INVALID COMMAND: ’A BAD COMMAND’

This message will match the NV390MSG_NetView_NCCF format specification defined

above IF the additional format statements include in MOREFMTS do not specify

another format specification that this message can match on. Remember, matches

on the FSS in the FMT file begin with the last FSS in the file and progress toward

the first FSS until a match occurs.

With this match, the source event attribute will be assigned the string value

NV390MSG. The origin event attribute will be assigned whatever default the event

adapter associates with this event attribute. The desctext event attribute will be

assigned the string This string will be overridden initially. These event

attributes are all assigned with the more generic NV390MSG_Event FSS, from which

the NV390MSG_NetView_NCCF FSS follows.

The sub_source event attribute will be assigned the value of NetView NCCF. The

msgnumber event attribute will be assigned the value 002I (which was dissected

from the input message on the first %s* specification). The -temp1 temporary event

attribute will be assigned the string INVALID COMMAND: ’A BAD COMMAND’ (which

was dissected from the input message on the second %s* specification). This

temporary variable is then used with the PRINTF value specifier to override the

desctext event attribute with the string Got a DSI message: INVALID COMMAND: ’A

BAD COMMAND’.

All of the event attributes, with the exception of the -temp1 event attribute, will be

used to build the outgoing Tivoli Enterprise Console event. The classname for the

event will be NV390MSG_NetView_NCCF , the name of the most specifically matched

FSS.

For more information about Tivoli Enterprise Console events, refer to the Tivoli

Enterprise Console Adapter’s Guide. For an example of using FSS, refer to the

IHSAMFMT sample shipped with the Event/Automation Service.

Event Receiver Post-CDS Processing

For the alert adapter service and message adapter service, translation files are used

to translate incoming service specific data into a Tivoli Enterprise Console event.

For the event receiver, a CDS file will be used to go in the opposite direction

(translate an event into a NetView alert).

To do this, the processing of the CDS file by the event receiver will be modified

slightly from the processing that is done on the file by the alert adapter service.

Syntactically, all of the information that is discussed in ″Class Definition Statement

Files″ section above is still true for the event receiver CDS file. The event receiver

treats the event that is output by the CDS file process as a pseudo event; that is,

the event is not meant to be sent to a Tivoli Enterprise Console server, but rather is

parsed for certain specific event attributes that are encoded into the NMVT.

140 Customization Guide

The Input Attribute List

The incoming Tivoli Enterprise Console event is encoded into an attribute list as

described in the service specific encoding section later in this chapter. In addition

to the $CLASSNAME keyword created when the incoming event is parsed, there

are additional keywords created for the input attribute list by the event receiver.

The following list describes the additional keywords:

 Keyword Description Default

$NMVT_TYPE

The type of the NMVT to be

created (alert or resolution).

This keyword is modified by

the NMVT_TYPE event

attribute. The NMVT_TYPE

event attribute can have a

value of ALERT or

RESOLVE.

ALERT

$CDS_GROUP

This keyword contains

values in the set

″GROUP001″, GROUP002″, ...

″GROUP999″. The value of

the CONTINUE event

attribute is used to set the

value of this keyword. For

more information on the

$CDS_GROUP keyword and

the CONTINUE event

attribute, see the section

″Matching Multiple CDS’s to

Create the Pseudo Event″

later in this chapter.

GROUP001

$BUILD_SV31LIST

Assigned the value of the

BUILD_SV31LIST event

attribute. This event attribute

can have a value of NO or

YES. When the alert is built,

the value of this keyword is

used to determine whether

subvector 31s are to be

added for each event

attribute/value pair in the

original Tivoli Enterprise

Console event. For more

information about the

$BUILD_SV31LIST keyword

and the BUILD_SV31LIST

event attribute, see the

section ″Building the SV 31s

containing the Original

Event″ later in this section.

YES

The Output Pseudo Event

Like any Tivoli Enterprise Console event, this pseudo event contains a class name,

followed by event attribute/value pairs. Note that because this event will never be

sent to a console, there is no .baroc file on any console server that corresponds to

these events. In general, a CDS file enables any event attribute/value pair and any

class name to be put into the pseudo event. Even though any class name and event

Chapter 8. Customizing the Event/Automation Service 141

attribute/value pair can be placed in the pseudo event, the event receiver only

uses certain predefined event attribute names to translate the event into an alert.

Any other event attributes are ignored.

The Pseudo Event Class name

The event receiver does not use the pseudo event class name for translating the

Tivoli Enterprise Console event. All of the CDSs in the event receiver CDS file can

have the same name; however, for ease of organizing the various CDSs and

debugging, it is recommended that you use a different class name for each CDS in

the CDS file. The convention used in the sample CDS file shipped with the E/AS

is to group the CDSs that are associated with producing a particular subvector

within the NMVT together and prefacing them with a common character string.

The end of the class name can then have some unique designation to make it

unique.

An example:

CLASS SV05_1

...

END

CLASS SV05_2

...

END

CLASS SV05_3

...

END

...

In this example, the SELECT segments (not shown) in each CDS statement will

cause a different subvector 05 to be built. The class name for the SV 05 that is

eventually built will have a unique name that identifies it as an SV 05. Again, this

information is only used only for visual organization and debugging.

The NMVT_TYPE event attribute

You can specify the type of NMVT, whether it is an alert or a resolution, by coding

the NMVT_TYPE event attribute in the MAP segment of a CDS. There are two

valid values for this event attribute: RESOLVE and ALERT. The value of this

event attribute is copied to the $NMVT_TYPE keyword.

The SV event attribute

This event attribute is the main vehicle for creating the subvectors that are to be

placed into the NMVT.

The event attribute name must be prefixed with SV; the rest of the event attribute

name can be any character string. SV05, SVAA and SVNONSENSE are all recognized as

SV event attributes. Again, for clarity and debugging, it is recommended that the

event attribute names contain the number of the subvector being created -- SV05,

SV92, SV05_1.

An SV event attribute value contains the full subvector (including the length and

subvector key). The values that are assigned to SV event attributes in the MAP

segment of a CDS are interpreted as character strings; the event receiver will

decode the numeric character string into the hexadecimal values that are to be

used in the alert. An example of a subvector event attribute from the sample CDS

file:

SV05 = "0B0509100004E3C5C30040";

142 Customization Guide

The value in the SV05 is a character string with hexadecimal characters. The event

receiver translates this character string into true numeric format for inclusion in the

NMVT. The event receiver does not validate this subvector. The subvector that is

placed into the NMVT is similar to the following:

0B0509100004E3C5C30040

Following the general CDS file syntax, if the event attribute value contains only the

digits in the range of 0–9, the value must be enclosed within double quotations to

be interpreted as a string. The previous example has alphabetic characters

(representing the hexadecimal values A-F) in it, so it was not necessary to enclose

the event attribute value within quotes. It is a good habit, though, to enclose SV

event attributes within double quotations.

Disabling Hexadecimal String Translation

In some cases, you may want to add a character string that is not a hexadecimal

value to the subvector string. As previously described, by default the event

receiver attempts to translate the event attribute value hexadecimal string into

numeric format under the assumption that the string is a sequence of hexadecimal

characters (0–9, A–F). In the previous example, the hexadecimal string E3C5C3 is,

in EBCDIC, TEC.

To specify the string TEC directly within the event attribute value, enclose the string

within <> braces. The braces must have escape characters preceding them; the

escape character is # . Using this convention, for example, the string is as follows:

SV05 = "0B0509100004#<TEC#>0040"

This event attribute value would produce exactly the same NMVT subvector as the

first example, as follows:

0B0509100004E3C5C30040

The braces indicate to the event receiver that the data enclosed within the braces is

not a hexadecimal string number that needs to be converted, but the string is to be

placed directly into the NMVT.

Using Attribute List Data in the Output Subvector

Event attributes can be assigned the value of a CDS variable ($V, $N, $F variables),

the value of a keyword, or generic attribute from the attribute list. When using

these variables, it is likely that the value of the variable should not be converted.

Also, it is likely that these variables do not contain the entire coded subvector

entirely within the variable. To handle this, the PRINTF style of MAP statement

assignment is useful.

Extending the SV 05 example introduced above, assume that the string TEC is the

value of the $V2 variable generated by a SELECT segment. To produce an identical

SV 05 for the NMVT, enter the following:

SV05 = PRINTF("0B0509100004#<%s#>0040", $V2);

Using the PRINTF syntax, the %s format specifier is substituted with the value of

the $V2 variable, which is TEC. The escaped braces tell the event receiver not to

translate the TEC string into numeric format, and again the following subvector

produced is identical to that produced in the first two examples:

0B0509100004E3C5C30040

Any time you need to assign data that came from the original Tivoli Enterprise

Console event to the output subvector, you will likely need to use the PRINTF

Chapter 8. Customizing the Event/Automation Service 143

syntax with string translation disabled. However, it is possible that the incoming

event has, as an event attribute value, the string E3C5C3 instead of the string TEC. In

this case, use the following string to produce the desired NMVT subvector:

SV05 = PRINTF("0B0509100004%s0040", $V2);

If you continued to disable the hexadecimal string translation, your output

subvector is similar to the following:

0B0509100004C5F3C3F5C3F30040

Each of the six characters E,3,C,5,C and 3 is left in their character state

(C5,F3,C3,F5,C3 and F3).

Automatic Subvector/Subfield Length Calculation

In the initial SV 05 example

SV05 = "0B0509100004E3C5C30040";

The length of the subvector was coded directly into the string. Because there is no

variable information in the subvector, the length is coded directly into the event

attribute value within the CDS MAP segment. The length of the subvector might

not be known when the CDS file is created if variable data is used.

Consider the following example that inserts attribute list data into the subvector:

SV05 = PRINTF("0B0509100004#<%s#>0040", $V2);

In this example, the value of the $V2 variable was TEC; therefore, it has a length of

3. This was used to calculate the total subvector length (0B), the subfield 10 length

(09), and the resource name length (04). In reality, the length of the value of the

$V2 variable will be unknown until the event arrives.

To enable the event receiver to calculate the length of a portion of the subvector

string, use curly braces {} around that portion of the string. The curly braces must

be escaped with the escape character #. The curly braces are removed from the

string when the length is calculated, but the opening curly brace is the place

holder in the subvector string for the length field.

Modify the previous example as follows:

SV05 = PRINTF("#{05#{1000#{#<%s#>#}0040#}#}", $V2);

Following is a step-by-step translation of this event attribute. The PRINTF

substitution is first as follows:

SV05 = "#{05#{1000#{TEC#}0040#}#}";

At this stage, the output subvector is similar to the following:

...E3C5C3...

Where the ellipsis represent all data yet to be translated into the subvector. Next,

the segment #{TEC#} is used to calculate the length of the resource name entry.

The output subvector is as follows:

...04E3C5C3...

The first #{ is replaced with the length of the segment, the matching #} is

removed. Next, the segment #{100004TEC0040#} is used to calculate the length of

the subfield 10 entry.

144 Customization Guide

The output subvector is as follows:

...09100004E3C5C30040

Again, the #{ is replaced with the length of the segment, the matching #} is

removed. Finally, the segment #{05091000100004TEC0040#} is used to calculate the

length of the entire subvector 05.

The final output subvector is as follows:

0B0509100004E3C5C30040

The BUILD_SV31LIST Event Attribute

The entire original Tivoli Enterprise Console event is, by default, coded into SV 31s

and attached to the NMVT. The class name, each event attribute/value pair, and

the END designator are coded into separate SV 31s. The BUILD_SV31LIST event

attribute enables the user to control whether this list of SV 31s is to be added to

the NMVT. When the pseudo event is completed, if a BUILD_SV31LIST event

attribute is present in the event AND has a value of NO, the SV 31 list is excluded.

Otherwise, the SV 31 list is included.

If any single slot/value pair is larger than what an SV 31 will allow, the slot/value

string is continued in additional SV 31s. The last character of a continued SV 31

will contain a + (plus sign) to indicate that it is continued into the next SV 31. The

+ (plus sign) must be in character position 255 of the SV 31 to signify continuation;

otherwise, the + (plus sign) is interpreted as part of the text message.

Multiple SV 31s will be created in order to continue a slot/value pair, if needed.

Each continued SV 31 will contain a + (plus sign) as the last character. The first

non-continued SV 31 represents the end of the slot/value pair.

The CONTINUE Slot

This event attribute is used to enable the matching of multiple CDSs to create a

single pseudo event. A full description of this multiple pass process on the CDS

file is given in ″Matching Multiple CDSs to Create the Pseudo Event″. This event

attribute can have a value of either NEXT or GROUPxxx, where xxx is a value in

the range of 000–999.

The value of this event attribute is used to update the value in the $CDS_GROUP

keyword. This keyword defaults to a value of GROUP001. If the value of a

CONTINUE event attribute is NEXT, $CDS_GROUP is updated by adding a 1 to

the three numeric digits at the end of the value. If the current value of

$CDS_GROUP is GROUP001, and a CONTINUE event attribute with a value of

NEXT is encountered in a MAP segment, the new value of the $CDS_GROUP

keyword will be GROUP001.

If the value of the CONTINUE event attribute is GROUPxxx, this value is used to

replace the $CDS_GROUP value only if the numeric digits in the event attribute

value are greater than the numeric digits in the current $CDS_GROUP value.

The SF21 Slot

This event attribute is used to override the code point in any Subfield 21s that are

in the SV 31s used to send the original Tivoli Enterprise Console event. The value

of this event attribute must be as follows:

attributeName=codepoint

Chapter 8. Customizing the Event/Automation Service 145

|
|
|
|
|

|
|
|

Where attributename is the name of any generic attribute in the input attribute

list, and codepoint is a 2-digit hexadecimal string that defines the value to be

placed in the SF 21 that is associated with the SV31 for the named generic

attribute.

Like the SV event attribute, the SF21 must only be prefixed with the string SF21;

any characters after this prefix are ignored.

Matching Multiple CDSs to Create the Pseudo Event

A major difference between the way that CDS files are processed by the event

adapters and how the CDS file is processed by the event receiver is the number of

CDSs that can be matched to produce a single Tivoli Enterprise Console event (or

pseudo event, in the case of the event receiver).

The One-Pass Method

The event adapters will run through all of the statements in a CDS file until either

one statement is matched or the end of the file is reached without a match. The

MAP segment of that single matching CDS is then used to create the event

attribute/value pairs that will go into the outgoing Tivoli Enterprise Console event.

Although this same one-pass process could be used to create any of the pseudo

events that will be translated into an alert, it could result in a cumbersome CDS

file. To illustrate this, consider the following example.

From an incoming event, create an alert that has various combinations of SV 05s

and SV 92s based on event attribute/value pairs in the event. For the SV 05

creation, you look for the presence of two event attributes -- resource1 and

resource2. The following four CDSs map the SV 05:

CLASS SV05_1

 SELECT

 1: ATTR(=,resource1);

 2: ATTR(=,resource2);

 MAP

 SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V1, $V2);

END

CLASS SV05_2

 SELECT

 1: ATTR(=,resource1);

 MAP

 SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#}#}", $V1);

END

CLASS SV05_3

 SELECT

 1: ATTR(=,resource2);

 MAP

 SV05 = PRINTF("#{05#{1000#{#<%s#>#}0040#}#}", $V1);

END

CLASS SV05_4

 SELECT

 1: ATTR(=,$CLASSNAME);

 MAP

 SV05 = "#{05#{1000#{#<NONE#>#}0084#}#}";

END

To produce the four different event attributes, different SELECT segments must be

used to inspect for the presence of these event attributes; therefore, there will be 4

146 Customization Guide

different CDSs in the CDS file. Only one of these SV 05s will be in the pseudo

event. The last CDS uses the $CLASSNAME keyword as a default. This keyword

will always be present, so the last CDS will be selected if none of the other CDSs

are matched.

The SV 92 subvector depends on value of another event attribute, severity. There

are three different values for the severity event attribute that could result in

different SV 92s, and a fourth SV 92 that is created if the severity event attribute

contains none of these values. These CDSs are as follows:

CLASS SV92_1

 SELECT

 1: ATTR(=,severity), VALUE(=,FATAL);

 MAP

 SV92 = "0B92010001FE0300000000"

END

CLASS SV92_2

 SELECT

 1: ATTR(=,severity), VALUE(=,WARNING);

 MAP

 SV92 = "0B92010011FE0300000000"

END

CLASS SV92_3

 SELECT

 1: ATTR(=,severity), VALUE(=,HARMLESS);

 MAP

 SV92 = "0B92010002FE0300000000"

END

CLASS SV92_4

 SELECT

 1: ATTR(=,$CLASSNAME);

 MAP

 SV92 = "0B92010012FE0300000000"

END

Again, this would require 4 different CDSs to produce one and only one of these 4

different event attributes.

To produce a single pseudo event that could have any combination of the above

SV 05s and SV 92s using one pass through the CDS file would require 16 different

CDS statements. The multiplication of the 4 statements needed to produce a

unique SV05 and the 4 statements needed to produce a unique SV 92. Each of the

16 MAP segments has a single SV 05 and SV 92, representing all of the

combinations that could occur. The four CDSs that represent both resources in

combination with the various SV 92s are:

CLASS SVBOTH_1

 SELECT

 1: ATTR(=,resource1);

 2: ATTR(=,resource2);

 3: ATTR(=,severity), VALUE(=,FATAL);

 MAP

 SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V1, $V2);

 SV92 = "0B92010001FE0300000000"

END

CLASS SVBOTH_2

 SELECT

 1: ATTR(=,resource1);

 2: ATTR(=,resource2);

 3: ATTR(=,severity), VALUE(=,WARNING);

 MAP

Chapter 8. Customizing the Event/Automation Service 147

SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V1, $V2);

 SV92 = "0B92010011FE0300000000"

END

CLASS SVBOTH_3

 SELECT

 1: ATTR(=,resource1);

 2: ATTR(=,resource2);

 3: ATTR(=,severity), VALUE(=,HARMLESS);

 MAP

 SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V1, $V2);

 SV92 = "0B92010002FE0300000000"

END

CLASS SVBOTH_4

 SELECT

 1: ATTR(=,resource1);

 2: ATTR(=,resource2);

 MAP

 SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V1, $V2);

 SV92 = "0B92010012FE0300000000"

END

When other subvectors that need to be placed in the same output NMVT are

added, the number of needed CDSs and the duplication of event attribute

mappings in the MAP segment grows considerably.

The Multiple-Pass Method

To alleviate this problem, the event receiver makes multiple passes though the CDS

file and collects separate mappings from each segment that it matches for the one

pseudo event that is created. The $CDS_GROUP keyword and the CONTINUE

event attribute are used to control the multiple pass method.

Each pass starts at the beginning of the CDS file. If a CDS is matched that contains

a valid CONTINUE event attribute, at least one more pass will be made through

the CDS file. If a CDS is matched that does not have a CONTINUE statement, or

no CDS is matched, that pass will be the last pass through the CDS file and all of

the event attributes collected to this point are used to create the pseudo event.

EVERY CDS SELECT segment MUST have one statement that looks for the

$CDS_GROUP keyword to be equal to a string in the range of

GROUP001–GROUP999. By default, the initial value of the $CDS_GROUP keyword

is GROUP001, so the first CDS statement matched must look for this keyword to

be equal to GROUP001.

When a CDS is matched, the CONTINUE event attribute definition in the MAP

segment of that CDS controls whether another pass will be made to match another

CDS. The CONTINUE event attribute will cause the value of the $CDS_GROUP

keyword to change to a specific value (CONTINUE = GROUP004) or to the next

numeric value (CONTINUE = NEXT). If a specific value is given, it must be greater

than the current value of the $CDS_GROUP keyword.

To illustrate the usage of the $CDS_GROUP keyword and the CONTINUE event

attribute, using the previous example, fill in the keyword and event attribute as

follows:

CLASS SV05_1

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP001);

148 Customization Guide

2: ATTR(=,resource1);

 3: ATTR(=,resource2);

 MAP

 SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V2, $V3);

 CONTINUE = NEXT;

END

CLASS SV05_2

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP001);

 2: ATTR(=,resource1);

 MAP

 SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#}#}", $V2);

 CONTINUE = NEXT;

END

CLASS SV05_3

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP001);

 2: ATTR(=,resource2);

 MAP

 SV05 = PRINTF("#{05#{1000#{#<%s#>#}0040#}#}", $V2);

 CONTINUE = NEXT;

END

CLASS SV05_4

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP001);

 MAP

 SV05_4 = "#{05#{1000#{#<NONE#>#}0084#}#}";

 CONTINUE = NEXT;

END

CLASS SV92_1

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP002);

 2: ATTR(=,severity), VALUE(=,FATAL);

 MAP

 SV92 = "0B92010001FE0300000000"

END

CLASS SV92_2

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP002);

 2: ATTR(=,severity), VALUE(=,WARNING);

 MAP

 SV92 = "0B92010011FE0300000000"

END

CLASS SV92_3

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP002);

 2: ATTR(=,severity), VALUE(=,HARMLESS);

 MAP

 SV92 = "0B92010002FE0300000000"

END

CLASS SV92_4

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP002);

Chapter 8. Customizing the Event/Automation Service 149

MAP

 SV92 = "0B92010012FE0300000000"

END

When a Tivoli Enterprise Console event arrives to be translated, the first subvector

created is the SV 05 subvector. Because the initial value of the $CDS_GROUP

keyword is GROUP001, the SELECT segments for all of the CDSs that create the

SV 05 will look for this value. If none of the first three CDSs in this group are

selected, the fourth will be selected by default. Because these CDSs define a

CONTINUE event attribute with a value of NEXT, the value of the $CDS_GROUP

keyword will be updated to GROUP002, and another pass will be made through

the CDSs to attempt to match on another CDS.

All of the SV 05 CDSs will now be ignored, because the $CDS_GROUP keyword is

another value. Without this gate, the same SV 05 CDS would continue to be

matched indefinitely. An SV 92 CDS will be matched next. The GROUP002 value

for the $CDS_GROUP keyword determines this. Because none of the SV 92 CDSs

have a CONTINUE event attribute, this will be the last pass made through the

CDS file.

Using the previous CDSs, if an event arrives with event attributes, as follows:

resource1=FIRSTRES

resource2=SECNDRES

severity=WARNING

The following two subvectors will be produced:

1B0519100009C6C9D9E2E3D9C5E2008409E2C5C3D5C4D9C5E20040

0B92010011FE0300000000

Building the NMVT

When the pseudo event has been created, the NMVT will be built from data in the

event attributes and keywords.

Building the SV 31s Containing the Original Event

The $BUILD_SV31LIST keyword indicates whether the SV 31s that contain the

original Tivoli Enterprise Console event data will be built. These SV 31s are added

to the NMVT first. The value of this keyword is modified by the contents of the

BUILD_SV31LIST event attribute.

Each SV 31 contains an element of the original event: the class name, an event

attribute/value pair, or the END designator. Formatted on an NPDA screen, a

simple CDS example follows (assuming that the original event had a class name of

SAMPLE):

ORIGINAL T/EC EVENT:

 SAMPLE;

 resource1=FIRSTRES;

 resource2=SECNDRES;

 severity=WARNING;

 END

Overriding the SF21 Codepoint

Each SV 31 contains an SF 21 subfield. By default, the codepoint associated with

this subfield is X'00'. Two codepoints allow the SV 31 to be associated with the

alert description and probable causes: codepoint X'21' to probable causes, and

codepoint X'22' to alert description. By default, the SV 31 associated with a severity

event attribute is assigned a X'21' codepoint, and the SV 31 associated with a msg

event attribute is assigned a X'22' codepoint.

150 Customization Guide

You can change which SV 31 is associated with the alert description or probable

causes using the SF21 event attribute. This event attribute contains the name of an

attribute from the input attribute list (which must be an event attribute value from

the incoming Tivoli Enterprise Console event), followed by an equal (=) sign,

followed by a one byte hexadecimal codepoint. For example, if you want to

associate an event attribute called eventdetail from the incoming event with the

alert description, code the following CDS:

CLASS SF21_1

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,"GROUP001");

 2: ATTR(=,eventdetail);

 MAP

 SF21_1 = PRINTF("%s=21",$N2);

END

The SF21_1 event attribute value follows:

eventdetail=21

When the SV 31 list is built, the data in the event attribute/value pair named by

eventdetail will be associated with the alert description.

This SF 21 override only has an effect if the $BUILD_SV31LIST keyword indicates

that the SV 31 list will be built; if the list is not to be built, this event attribute is

ignored.

Alert or Resolve

The value of the $NMVT_TYPE keyword indicates whether the NMVT will be an

alert NMVT (type 0000) or a resolve NMVT (type 0002). This keyword defaults to

an alert NMVT. If the NMVT_TYPE event attribute is set within any matched CDS,

the value of the $NMVT_TYPE keyword is set to this event attribute.

Adding the User Subvectors

After the SV 31s are added and the NMVT type is determined, the user subvectors

created from CDS MAP segments are added to the NMVT. As previously

mentioned, any event attribute can be assigned a value in the MAP segment of a

CDS statement. The only event attributes that will be used to build user

subvectors, however, must be prefixed with SV.

If the same event attribute name is used more than once, the value of the last one

is used as the value of the event attribute. Therefore, if you need multiple

subvectors of the same type, name the event attributes with this subvector data

uniquely. Using SV10 as the event attribute name for more than one SV 10 is not

valid, because all preceding event attributes will be overwritten in the event

attribute list. Use unique names such as SV10_1, SV10_2, and so forth.

The names for subvector event attributes do not necessarily correspond to the

subvector. The value of an event attribute that you name as SV10_1 can contain

data for a completely different subvector. The value of the subvector event

attribute determines the subvector type, not the name of the event attribute.

The value of a subvector event attribute is decoded as previously described.

Subvectors are added to the NMVT in the order that their defining event attributes

are encountered in the MAP segments.

Calculating the AlertID for SV 92

Because the alert ID field must be calculated for the subvector at the time that

NMVT is built, the event receiver will calculate the value for this field of SV 92.

Chapter 8. Customizing the Event/Automation Service 151

However, you must specify an alert ID place holder in any SV 92 event attributes

that you code in a CDS file. You can put any 4 bytes there; they will be

overwritten by the event receiver. It is recommended that you code four bytes of

zero (00000000) as the place holder.

The event receiver calculates the alert ID as described in SNA Formats.

An Example

The following example uses the default event receiver service CDS file

(IHSAECDS) provided in the Event/Automation Service.

Assume the following Tivoli Enterprise Console event has been received by the

event receiver:

SNA_Performance_Degraded;source=NV390ALT;origin=B3088P2;

sub_origin=TX12/DEV;hostname=USIBMNT.NTVED;adapter_host=NMPIPL06;

date=OCT 29 16:32:52;severity=WARNING;msg=PERFORMANCE DEGRADED:

CONTROLLER;adapter_host_snanode=USIBMNT.NTVED;

event_type=NOTIFICATION;arch_type=GENERIC_ALERT;

product_id=3745;alert_id=00000009;

block_id=’’;action_code=’’;alert_cdpt=4000;

self_def_msg=[ALRTTXT2];event_correl=[N/A];

incident_correl=[N/A];adapter_correl=E7735930A;END

The previous event was an alert that was changed into an event by the alert

adapter. All of the event attribute/value pairs are first coded into generic attributes

for the input attribute list; the $CLASSNAME keyword attribute is assigned the

value SNA_Performance_Degraded.

The first group in the CDS file is GROUP001; these CDSs determine the NMVT

type. Because there is not a status event attribute in the incoming Tivoli Enterprise

Console event, the NMVT_TYPE event attribute and the $NMVT_TYPE keyword

are set to the value ALERT. Because CONTINUE=NEXT is specified in the MAP segment,

the $CDS_GROUP keyword is set to GROUP002.

The next group in the CDS file defines the SV 93. None of the information in the

original event determines the value of the SV 93; the value of this subvector is as

follows:

0493FE03

CONTINUE=NEXT is specified in the MAP segment. The $CDS_GROUP keyword is set

to GROUP003.

The next group in the CDS file defines the SV 05. The example event will match on

the class SV05_4, it has a host name, origin, and source event attribute, but not a

probe event attribute. After PRINTF and translation, the value of this subvector

follows:

2A052810000EE4E2C9C2D4D5E34BD5E3E5C5C4008408C2F3F0F8F8D7F200F509D5E5F3F9F0C1D3E30040

CONTINUE=NEXT is specified in the MAP segment. The $CDS_GROUP keyword is set

to GROUP004.

The next group in the CDS file defines the SV 10. None of the information in the

original event determines the value of the SV 10; the value of this subvector

follows:

1C10001911040506C7C5D40908F5F6F9F7C2F8F3080FE3C9E5D6D3C9

152 Customization Guide

CONTINUE=NEXT is specified in the MAP segment. The $CDS_GROUP keyword is set

to GROUP005.

The next group in the CDS file defines the SV 92. The example event will match on

the class SV92_4, it has severity=WARNING and the $NMVT_TYPE is set to ALERT.

The value of this subvector follows:

0B92010011FE0300000000

The alert ID portion of this subvector (the last 4 bytes) will be calculated and filled

in by the event receiver. CONTINUE=NEXT is specified in the MAP segment. The

$CDS_GROUP keyword is set to GROUP006.

The next group in the CDS file defines the SV 97. The example event will match on

the class SV97_1, the $NMVT_TYPE is set to ALERT. The value of this subvector

follows:

0A970881200035003000

CONTINUE=NEXT is specified in the MAP segment. The $CDS_GROUP keyword is set

to GROUP007.

The next group in the CDS file defines an SF 21. The example event will match on

the one and only CDS for this group, the msg event attribute is present in the

event. The value of this subfield override follows:

msg=21

CONTINUE=NEXT is specified in the MAP segment. The $CDS_GROUP keyword is set

to GROUP008.

The last group in the CDS file defines another SF 21. The example event will match

on this last CDS, the severity event attribute is present in the event. The value of

this subfield override follows:

severity=22

The $BUILD_SV31LIST keyword is still set to YES. The NMVT built from the

previous process follows:

03D800002B310602028000000512C5D5E40321001B30E2D5C16DD7859986969994819583

856DC4858799818485845E22310602028000000512C5D5E40321001230A296A49983857E

D5E5F3F9F0C1D3E35E4A310602028000000512C5D5E40321003A309699898789957EC2F3

F0F8F8D7F261E2D76BD5C1D761E3D76BC4C5C3D5C5E361E3C5D9D46BD9C1D3E5F461C4C5

E56BE3E7F1F261C4C5E55E26310602028000000512C5D5E40321001630A2A4826D969989

8789957EE3E7F1F261C4C5E55E29310602028000000512C5D5E403210019308896A2A395

8194857EE4E2C9C2D4D5E34BD5E3E5C5C45E28310602028000000512C5D5E40321001830

81848197A385996D8896A2A37ED5D4D7C9D7D3F0F65E27310602028000000512C5D5E403

210017308481A3857ED6C3E340F2F940F1F67AF3F27AF5F25E23310602028000000512C5

D5E40321221330A285A5859989A3A87EE6C1D9D5C9D5C75E36310602028000000512C5D5

E4032121263094A2877ED7C5D9C6D6D9D4C1D5C3C540C4C5C7D9C1C4C5C47AC3D6D5E3D9

D6D3D3C5D95E35310602028000000512C5D5E4032100253081848197A385996D8896A2A3

6DA29581959684857EE4E2C9C2D4D5E34BD5E3E5C5C45E2A310602028000000512C5D5E4

0321001A3085A58595A36DA3A897857ED5D6E3C9C6C9C3C1E3C9D6D55E2A310602028000

000512C5D5E40321001A30819983886DA3A897857EC7C5D5C5D9C9C36DC1D3C5D9E35E22

310602028000000512C5D5E4032100123097999684A483A36D89847EF3F7F4F55E243106

02028000000512C5D5E4032100143081938599A36D89847EF0F0F0F0F0F0F0F95E1E3106

02028000000512C5D5E40321000E3082939683926D89847E7D7D5E213106020280000005

12C5D5E403210011308183A38996956D839684857E7D7D5E22310602028000000512C5D5

E4032100123081938599A36D838497A37EF4F0F0F05E2A310602028000000512C5D5E403

21001A30A28593866D8485866D94A2877EADC1D3D9E3E3E7E3F2BD5E2531060202800000

0512C5D5E4032100153085A58595A36D8396999985937EADD561C1BD5E28310602028000

000512C5D5E4032100183089958389848595A36D8396999985937EADD561C1BD5E2B3106

02028000000512C5D5E40321001B3081848197A385996D8396999985937EC5F7F7F3F5F9

Chapter 8. Customizing the Event/Automation Service 153

F3F0C15E15310602028000000512C5D5E40321000530C5D5C40493FE032A052810000EE4

E2C9C2D4D5E34BD5E3E5C5C4008408C2F3F0F8F8D7F200F509D5E5F3F9F0C1D3E300401C

10001911040506C7C5D40908F5F6F9F7C2F8F3080FE3C9E5D6D3C90B92010011FE030000

00000A970881200035003000

Translating ASCII Text Data

SNMP agents send up data (whether in variable bindings or other parts of the

trap) that is essentially ASCII text data, but the data type in the encoding trap

indicates an octet string. Since the data type is an octet string, the trap-to-alert data

encoding process treats each byte of data as raw hexadecimal data rather than an

encoded character. As a result, the parsing done by the trap-to-alert conversion

task merely turns this data into a character representation of the hex data bytes for

in SELECT criteria in the CDS file. For example, assume the character string ABC

appears in a variable binding value with a type of octet string. Since the data is an

octet string, the data is converted to the character string 414243 and assigned to the

generic keyword associated with the variable binding name.

If you want to use the original ASCII string value of the generic keyword in the

outgoing alert, the ASCII string 414243 needs to be converted back to the character

string ABC and changed to EBCDIC. The $[and $] escape sequence has been

provided to allow for conversion of the EBCDIC character string 414243 back to

the EBCDIC character string ABC.

Within the value encoding, inside the double quotes for the value of the subvector

event attribute (whether in a PRINTF or not), this escape set is used to delimit data

that is considered to be the character representation of hex data that, in turn, is

ASCII character data. Data delimited in this way is turned into EBCDIC character

data and placed within the value of the subvector event attribute. For example, if

you had the following event attribute assignment in a Class Definition Statement:

 SV05 = "0B0509100004#[414243#]0040"

The encoding of this event attribute value into an actual hexadecimal alert

subvector would produce:

0B0509100004C1C2C30040

If data within the range delimited by the escape sequences turns out not to be

character representations of hex data that are ASCII characters, then the conversion

to EBCDIC will fail, and the translation of the trap (and thus, building of the

alert/resolve) is terminated and the trap is discarded. Note that if other escape

sequences occur following ″#[″ and before ″#]″ is encountered, they are simply

treated as characters that are put into the subvector, which would later fail

conversion to hex then EBCDIC, because they aren’t character representations of

hex digits. Also, if ″#[″ or ″#]″ occur following the ″#<″ escape sequence, which

″turns off″ translation of character representations of hex digits to hex data in the

subvector, and before ″#>″, which ″restores″ that translation mode, then ″#[″ and

″#]″ are simply treated as untranslated character data, and not escape sequences.

Translating SNMP Non-String Data Types

Some attributes used in CDS selection are assigned names based upon the places

in the trap from which their values are extracted, while other names are adapted

directly from the trap (for example, variable names, which are object identifiers, in

the variable bindings). The encoded values are all string data, displayable forms of

the data within the trap, and the formats of these strings depend upon the data

types assigned to these pieces of data in the trap.

154 Customization Guide

As an example, suppose that the data type of a value in the trap was found to be

that of an internet address. The trap-to-alert conversion task would turn this into a

string which was the IP address. The following data types can be assigned to data

in an SNMP trap, and the corresponding string to which it is translated.

integer

signed decimal number string. The integer 30 becomes the EBCDIC string

″30″

null a pair of single quotes in EBCDIC. This becomes the EBCDIC string ″″″.

octet string

hexadecimal data string. The hex string 313233 becomes the EBCDIC string

″313233″.

object identifier

ASN.1 data in dotted decimal notation format. The object 2C010306

becomes the EBCDIC string ″1.4.1.3.6″.

printable string

an EBCDIC string

visible string

an EBCDIC string

general string

an EBCDIC string

internet address

IP address. For example, if you are using, dotted decimal notation format,

the address 09080706 becomes the EBCDIC string ″9.8.7.6″.

counter

unsigned decimal number string. The number 05 becomes the EBCDIC

string ″5″.

gauge unsigned decimal number string. The number 50 becomes the EBCDIC

string ″50″.

ticks unsigned decimal number string. The number 132 becomes the EBCDIC

string ″132″.

 When the value is not of a data type listed above, then that value is treated as if it

had a data type of octet string. Also, if the data type of the value in the binding is

a complex structure like SEQUENCE OF (something that should not happen), then

the value is treated as if it had the null data type.

The following example uses the default trap-to-alert service CDS file (IHSATCDS)

supplied with the Event/Automation Service. Assume the following trap data is

received by the trap-to-alert conversion task (words separated for readability).

303B0201 00040670 75626C69 63A42E06

0C2B0601 14011203 01020101 03400449

B5203F02 01050201 00430100 300F300D

06082B06 01120108 07000201 30

Also assume that the IP address and port associated with the agent originating the

trap is 9.50.20.8 and 161, respectively.

The trap data is first coded into corresponding keyword and generic attributes for

the input attribute list. The encoded string attributes are:

Chapter 8. Customizing the Event/Automation Service 155

|

|
|

$ORIGIN_ADDR 9.50.20.8

 $ORIGIN_PORT 161

 $SNMP_VERSION 0

 community public

 enterpriseOID

1.3.6.1.20.1.18.3.1.3.1.1.3

 agent_address 73.181.32.63

 generic_trap 5

 specific_trap 0

 timestamp 0

 1.3.6.1.18.1.8.7.0 30

The first group in the CDS file is GROUP001; this CDS determines the NMVT type

and BUILD_SV31LIST setting. Since this trap is not a Multi-System Manager trap,

the generic formatting done by the CDS file IHSATALL is used. The NMVT_TYPE

event attribute (and therefore, the $NMVT_TYPE keyword) is set to the value

ALERT. The BUILD_SV31LIST event attribute (and therefore, the

$BUILD_SV31LIST keyword) is set to the value YES. Since CONTINUE=NEXT is

specified in the MAP segment, the $CDS_GROUP keyword is set to GROUP002.

The next group in the CDS file defines the SV 92. The value of this subvector is:

0B92080012FE0000000000

The Alert ID portion of this subvector (the last 4 bytes) will be calculated and filled

in by the event receiver. CONTINUE=NEXT is specified in the MAP segment, the

$CDS_GROUP keyword is set to GROUP003.

The next group in the CDS file defines the SV 05. After PRINTF and translation,

the value of this subvector is:

22050E100009F7F34BF1F8F14BF300811211000DF7F34BF1F8F14BF3F24BF6F30081

CONTINUE=NEXT is specified in the MAP segment, the $CDS_GROUP keyword

is set to GROUP004.

The next group in the CDS file defines the SV 10. The value of this subvector is:

5A1000281103030000220EE261F3F9F040D78199819393859340C595A3859997

9989A28540E28599A585992F11040804F0F1F0F3F0F01B06E389A596938940D5

85A3E58985A64086969940D6E261F3F9F00908F5F6F9F7C2F8F2

CONTINUE=NEXT is specified in the MAP segment, the $CDS_GROUP keyword

is set to GROUP005.

The next group in the CDS file defines another SV 10, which contains information

about the resource reporting the trap. The value of this subvector is:

2C10000F1109030000090EA495929596A6951A110C0E02F0F0F0F0F0F0F0F0F0

F0F0F00906A495929596A695

CONTINUE=NEXT is specified in the MAP segment, the $CDS_GROUP keyword

is set to GROUP006.

The next group in the CDS file defines the SV 93 and SV 97. The value of these

subvectors are:

0493FE000

A970401210004810000

CONTINUE=NEXT is specified in the MAP segment, the $CDS_GROUP keyword

is set to GROUP007.

156 Customization Guide

The last group in the CDS file defines the SV 98. The enterpriseOID, specific trap,

and generic trap values are added as information in this subvector. The value of

this subvector is:

severity=22

The $BUILD_SV31LIST keyword is still set to YES, the actual NMVT built from the

previous process is:

027B000029310602028000000512C5D5E40321001930D6D9C9C7C9D56DC1C4C4D97EF94B

F6F74BF5F04BF1F85E23310602028000000512C5D5E40321001330D6D9C9C7C9D56DD7D6

D9E37EF1F0F3F45E21310602028000000512C5D5E40321001130E2D5D4D76DE5C5D9E2C9

D6D57EF05E29310602028000000512C5D5E4032100193083969494A49589A3A87EF7F0F7

F5F6F2F6C3F6F9F6F35E3C310602028000000512C5D5E40321002C308595A38599979989

A285D6C9C47EF14BF34BF64BF14BF2F04BF14BF1F84BF34BF14BF24BF14BF14BF35E2D31

0602028000000512C5D5E40321001D3081878595A36D8184849985A2A27EF7F34BF1F8F1

4BF3F24BF6F35E21310602028000000512C5D5E40321001130878595859989836DA39981

977EF55E22310602028000000512C5D5E40321001230A2978583898689836DA39981977E

F05E1E310602028000000512C5D5E40321000E30A3899485A2A38194977EF05E28310602

028000000512C5D5E40321001830F14BF34BF64BF14BF1F84BF14BF84BF74BF07EF4F85E

0B92080012FE00331AA4A122050E100009F7F34BF1F8F14BF300811211000DF7F34BF1F8

F14BF3F24BF6F300815A1000281103030000220EE261F3F9F040D78199819393859340C5

95A38599979989A28540E28599A585992F11040804F0F1F0F3F0F01B06E389A596938940

D585A3E58985A64086969940D6E261F3F9F00908F5F6F9F7C2F8F22C10000F1109030000

090EA495929596A6951A110C0E02F0F0F0F0F0F0F0F0F0F0F0F00906A495929596A69504

93FE000A9704012100048100002E98208229F811F14BF34BF64BF14BF2F04BF14BF1F84B

F34BF14BF24BF14BF14BF3068229FA11F5068229FB11F0

Trap-to-Alert Post-CDS Processing

The trap-to-alert service post-CDS processing is nearly identical to that used by the

event receiver post-CDS processing. The differences are:

v There is no $CLASSNAME keyword created by the trap-to-alert service since the

incoming data was not a Tivoli Enterprise Console event.

v An additional escape sequence set $[and $] is available to aid in translating

variable binding data that are ASCII octet strings.

v Unlike Tivoli Enterprise Console event data, SNMP trap data can have a data

type other than a character string.

Advanced Customization - Trap-to-Alert Forwarding Daemon

The way the Event/Automation Service trap-to-alert conversion task receives traps

is through a datagram socket which is bound to a port that you define in the

configuration file (sample member name IHSATCFG). The conventional trap

manager data port number, 162, is the default port.

Since port 162 is a ″well-known″ port for SNMP managers, and there may be

multiple SNMP manager applications that are interested in trap data, this sort of

port assignment can cause a conflict. To help resolve any conflicts, there is also a

sample datagram forwarding daemon, IHSAUFWD, and an associated sample

configuration file, IHSAUCFG, that are shipped with the Event/Automation

Service. The daemon receives data on a datagram socket and forwards that data to

the destinations given in the configuration file.

Most SNMP agents are set to forward traps to the trap manager at port 162.

IHSAUFWD can use this port to receive the trap data for all interested managers

and then forward this data to the managers. These managers can be on the local

system or at any IP address on the network.

Chapter 8. Customizing the Event/Automation Service 157

The IHSAUFWD daemon uses a sample configuration file (IHSAUCFG) to specify

the SNMP managers that are to receive the data. A description of the contents of

this configuration file follows:

comments

Comments can be formed by beginning a line with the number sign (#) or

the exclamation point (!).

host internet address and port

To code a destination for the datagram forwarding daemon, put the

following on a line in the file:

v IP address

v white space (one or more blanks)

v port number, in decimal

An example of a lone coded like this would be:

137.45.110.2 6001

For more information on how to use and customize the forwarding daemon, refer

to the comments in the IHSAUFWD sample.

Detailed Example for Trap-to-Alert Conversion

Suppose an SNMP trap is emitted for a managed entity with a problem, and you

want NetView to take some action when it appears. A way to do that is to have

the Event/Automation Service receive the trap, convert it to an alert NMVT, then

use NetView automation to process the alert NMVT and take some action (execute

a command).

Generally, you will need to know something about the information the SNMP trap

contains in order to parse the trap and transfer the most useful of the information

to the alert NMVT so that the processing of the alert NMVT will be the most

effective. Documentation associated with the entities emitting the SNMP traps may

contain this kind of information. It may also be obtained by a trace that is active

when the SNMP trap flows, such as the IP data trace of the Event/Automation

Service or a z/OS Communications Server packet trace.

Knowing what information to expect in the SNMP trap, you then create the class

definition statements necessary to extract the interesting information from the trap

and construct the alert NMVT. Of course, if you are also using Multisystem

Manager’s IP management functions, you will want to ensure that your new

definitions are integrated so that Multisystem Manager’s IP management functions

still work. The class definition statements in this example are designed so that they

can placed in sample member IHSATUSR and work with the sample definitions

provided by NetView in IHSATCDS and the other members it includes.

This examples starts with an SNMP trap that is emitted for an uninterruptible

power supply problem. The data is shown in hex and has been separated and

annotated to make the trap contents more clear.

*

* Outermost constructor for the trap (tag and length)

*

30820127

* SNMP version (00 = SNMPv1)

020100

* Community name (public)

04067075626C6963

* Trap PDU

158 Customization Guide

|

A4820118

* Enterprise object ID (1.3.6.1.4.1.12270)

06072B06010401DF6E

* Agent address (10.71.225.20)

40040A47E114

* Generic trap code (6 = enterprise specific)

020106

* Specific trap code (32 in decimal)

020120

* Timeticks

430402A2D49D

* Variable bindings "container"

308200F9

* Variable binding 1

3015

* Variable 1 (1.3.6.1.4.1.12270.200.2.1.1.1)

060D2B06010401DF6E814802010101

* Value 1 (octet string "1493")

040431343933

* Variable binding 2

3019

* Variable 2 (1.3.6.1.4.1.12270.200.2.1.1.2)

060D2B06010401DF6E814802010102

* Value 2 (octet string "/L20/O50")

04082F4C32302F4F3530

* Variable binding 3

3024

* Variable 3 (1.3.6.1.4.1.12270.200.2.1.1.3)

060D2B06010401DF6E814802010103

* Value 3 (octet string "2005-01-10T16:13:00")

0413323030352D30312D31305431363A31333A3030

* Variable binding 4

3014

* Variable 4 (1.3.6.1.4.1.12270.200.2.1.1.4)

060D2B06010401DF6E814802010104

* Value 4 (octet string "I14")

0403493134

* Variable binding 5

3025

* Variable 5 (1.3.6.1.4.1.12270.200.2.1.1.5)

060D2B06010401DF6E814802010105

* Value 5 (octet string "DIGIN ON OCCURRED")

0414444947494E204F4E202020204F43435552524544

* Variable binding 6

3015

* Variable 6 (1.3.6.1.4.1.12270.200.2.1.1.6)

060D2B06010401DF6E814802010106

* Value 6 (octet string "DI=1")

040444493D31

* Variable binding 7

3025

* Variable 7 (1.3.6.1.4.1.12270.200.2.1.1.7)

060D2B06010401DF6E814802010107

* Value 7 (octet string "RC2 Gas Status Man. ")

04145243322047617320537461747573204D616E2E20

* Variable binding 8

3011

* Variable 8 (1.3.6.1.4.1.12270.200.2.1.1.8)

060D2B06010401DF6E814802010108

* Value 8 (NULL)

0500

* Variable binding 9

3011

* Variable 9 (1.3.6.1.4.1.12270.200.2.1.1.9)

Chapter 8. Customizing the Event/Automation Service 159

060D2B06010401DF6E814802010109

* Value 9 (NULL)

0500

Knowing that this type of SNMP trap will always contain these variable bindings

and that the values, at least of the interesting variables, will always be the same

kind of data, you can use these class definition statements provide a way to

convert the SNMP trap to an alert NMVT. These sample statements contain

additional commentary to explain the trap data transferred to the NMVT.

Note: In the following example, please note the following:

v Because of printing constraints, some of the command lines had to be

″broken″ in order to fit on the page.

v Use codepage 1047 X'AD' to code a left bracket ([) and codepage 1047

X'BD' to code a right bracket (]).
#***

Definitions for catching an SNMP trap indicating a UPS problem

and turning it into an alert NMVT.

First pass, build subvectors X’92’ (generic alert), X’10’

product set ID (one each for alert sender and reported resource),

X’93’ (probable cause), and X’96’ (failure cause).

The first pass looks for GROUP001 and a specific trap value

of 32 (the specific trap value in the trap was converted to

a string representing the value in decimal).

#***

CLASS IHSATUSR_UPS1

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,"GROUP001");

 2: ATTR(=,specific_trap), VALUE(=,"32");

 MAP

|-- First pass sets desire for alert NMVT

 NMVT_TYPE = ALERT;

|-- For this, we don’t want SV x’31’ set

| We’ll build our own SV x’31’ later

 BUILD_SV31LIST = NO;

|-- Alert description code-point

| I chose X’1501’ LOSS OF EQUIPMENT COOLING

| to illustrate.

 SV92 = "#{92080001150100000000#}";

Hardware and software information for alert builder

(basically hard-coded and uses our software product name,

because E/AS is building the alert NMVT)

 Note that the line beginning SV10_1 and the line beginning SV10_2 should be

coded on continuous lines up to and including the semicolon character

 SV10_1 = "#{1000#{1103#{0000#}#{0E#<S/390 Parallel Enterprise Server#>#}#}#

{1104#{02#<5697-ENV0000#>#}#{04#<050200#>#}#{06#<Tivoli NetView for z/OS#}#}#}";

 SV10_2 = "#{1000#{1109#{0000#}#{0E#<UPS system#}#}#{110C#{02#<000000000000#>#}#

{06#<unknown#}#}#}";

|-- Probable cause code-point

| x’0301’ COOLING FAN chosen to illustrate.

|

 SV93 = "#{930301#}";

160 Customization Guide

|-- Failure cause code-point

| X’0301’ COOLING FAN chosen to illustrate

|

| |-- Recommended action code-point

| | X’0300’ CHECK FOR DAMAGE and

| | X’1800’ REPLACE DEFECTIVE EQUIPMENT

| | to illustrate

 SV96 = "#{96#{010301#}#{8103001800#}#}";

|-- Keep going to next pass (GROUP002, for example)

 CONTINUE = NEXT;

END

Second pass for our UPS trap - defer to third pass, where we will

use the generic subvector X’05’ (hierarchy/resource list)

construction from member IHSATALL.

CLASS IHSATUSR_UPS2

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,"GROUP002");

 2: ATTR(=,specific_trap), VALUE(=,"32");

 MAP

|-- Tells trap to alert to continue to third pass

 CONTINUE = NEXT;

END

Defer subvector X’05’ definition to GROUP003 generic CLASS

definition in IHSATALL

Fourth pass for UPS trap, construct subvector X’98’ (detailed

data) and subvectors X’31’. ALL selection criteria must be met

in order for inclusion of the information defined here in the

alert NMVT.

1) fourth pass, (CDS_GROUP keyword has the value GROUP004)

2) generic trap

Because no VALUE was supplied, we just look for

presence of the item, which, for an SNMPv1

trap, should always be there.

A primary reason to look for the presence of

of something that should always be there is that

this provides the method by which we can retrieve

the value, perhaps manipulate it, then put it in

the alert NMVT.

3) specific trap code with value 32 decimal,

4) MIB variable with name "1.3.6.1.4.1.12270.200.2.1.1.1"

Because gave no VALUE, we merely expect it to

have been present in the trap, again so we

retrieve its value and use it.

5) presence of origin address keyword,

6) presence of origin port keyword,

7) presence of community information,

8) presence of enterprise object ID,

9) presence of agent address,

10) presence of a timestamp,

11) presence of MIB variable "1.3.6.1.4.1.12270.200.2.1.1.2",

12) presence of MIB variable "1.3.6.1.4.1.12270.200.2.1.1.3",

13) presence of MIB variable "1.3.6.1.4.1.12270.200.2.1.1.5"

Chapter 8. Customizing the Event/Automation Service 161

CLASS IHSATUSR_UPS3

 SELECT

 1: ATTR(=,$CDS_GROUP), VALUE(=,"GROUP004");

 2: ATTR(=,generic_trap);

 3: ATTR(=,specific_trap), VALUE(=,"32");

 4: ATTR(=,"1.3.6.1.4.1.12270.200.2.1.1.1");

 5: ATTR(=,$ORIGIN_ADDR);

 6: ATTR(=,$ORIGIN_PORT);

 7: ATTR(=,community);

 8: ATTR(=,enterpriseOID);

 9: ATTR(=,agent_address);

 10: ATTR(=,timestamp);

 11: ATTR(=,"1.3.6.1.4.1.12270.200.2.1.1.2");

 12: ATTR(=,"1.3.6.1.4.1.12270.200.2.1.1.3");

 13: ATTR(=,"1.3.6.1.4.1.12270.200.2.1.1.5");

 MAP

│-- Special detail data = hard-code

│ enterprise information

│ │-- Special detail data

│ │ = generic trap code

│ │

│ │ │-- Special

│ │ │ detail data

│ │ │ = specific

│ │ │ trap code

│ │ │

│ │ │

│ │ │

│ │ │

│ │ │

│ │ │

 SV98 = PRINTF("#{98#{8229F811#<Ent_Name#>#}#{8229FA11#<%s#>#}#{8229FB11#<%s#>#}#}",$V2,$V3);

Now we also add some X’31’ subvectors to convey additional

information that came in the SNMP trap.

Notice something in the definitions for SV31_2 and SV31_6.

Both the community and the information from the variable binding

expected in the SNMP trap are, for this example, presumed to have

ASCII text data even though the data type encoded in the trap

indicates merely OCTET STRING. When E/AS encounters the OCTET

STRING data type, E/AS converts it to a string representing the

value in hexadecimal. Because we have decided it’s really text

data and we want to be able to read in the display of the alert

in hardware monitor, we use the escape character sequences (pound-sign followed

by left bracket and pound-sign followed by right bracket) to delimit

the string representing hexadecimal data and tell E/AS to convert it

to EBCDIC text for inclusion in the subvector we’re building.

Subvector x’31’ showing origin IP address:port number

Note that this should be coded on one continuous line

 SV31_1 = PRINTF("#{31#{0202800000#}#{12#<ENU>#}#{2100#}#{30#<Origin

Address=%s:%s#>#}#}",$V5,$V6);

Subvector x’31’ showing community name in EBCDIC

Note that the left square bracket must be x’AD’ and the

right square bracket must be x’BD’

│--Left square

│ bracket must

│ be x’AD’

│ codepage 1047

│

162 Customization Guide

│ │Right square

│ │bracket must

│ │be x’BD’

│ │codepage 1047

│ │

 SV31_2 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#{30#<Community=#>#[%s#]#}#}",$V7);

Subvector x’31’ showing enterprise object ID

Note that this should be coded on one continuous line

 SV31_3 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#{30#<Enterprise

Object ID=%s#>#}#}",$V8);

Subvector x’31’ showing agent IP address

 SV31_4 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#{30#<Agent Address=%s#>#}#}",$V9);

Subvector x’31’ showing the timestamp

 SV31_5 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#{30#<Timestamp=%s#>#}#}",$V10);

Subvectors x’31’ showing what we presume to be text from the

variable bindings in the trap. We hard-code the MIB variable names

in the text. For the MIB variable values we want to also include

in the text, we are assuming that the values are, in fact, ASCII

text that we want to see in EBCDIC when we display the alert NMVT

in hardware monitor.

Note that the left square bracket must be x’AD’ and the right square bracket

must be x’BD’

Note also that this should be coded on one continuous line

 SV31_6 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#

{30#<1.3.6.1.4.1.12270.200.2.1.1.1 =

 #>#[%s#]#}#}",$V4);

Builds SV31 with 1.3.6.1.4.1.12270.200.2.1.1.2 = its value in EBCDIC

Note that this should be coded on one continuous line

 SV31_7 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#

{30#<1.3.6.1.4.1.12270.200.2.1.1.2 = #>#[%s#]#}#}",$V11);

Builds SV31 with 1.3.6.1.4.1.12270.200.2.1.1.3 = its value in EBCDIC

Note that this should be coded on one continuous line

 SV31_8 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#

{30#<1.3.6.1.4.1.12270.200.2.1.1.3 = #>#[%s#]#}#}",$V12);

Builds SV31 with Message = and the value of the

1.3.6.1.4.1.12270.200.2.1.1.5 MIB variable in EBCDIC.

Note that this should be coded on one continuous line

 SV31_9 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#

{30#<Message=#>#[%s#]#}#}",$V13);

END

For details of the class definition statement processing, see “The Multiple-Pass

Method” on page 148 as well as “Trap-to-Alert Post-CDS Processing” on page 157.

Assuming that the hardware monitor recording filters allow the alert NMVT to be

saved, the alert NMVT produced by the trap-to-alert conversion process would

look like this in hardware monitor event detail.

N E T V I E W SESSION DOMAIN: CNM01 NETOP2 08/19/05 13:27:17

 NPDA-43S * EVENT DETAIL * PAGE 1 OF 4

Chapter 8. Customizing the Event/Automation Service 163

NTV90 10.71.22

 +--------+

 DOMAIN | SP |

 +--------+

 SEL# TYPE AND NAME OF OTHER RESOURCES ASSOCIATED WITH THIS EVENT:

 (1) SP 10.71.225.20

 DATE/TIME: RECORDED - 08/19 13:16 CREATED - 08/19/05 13:16:16

 EVENT TYPE: PERMANENT

 DESCRIPTION: LOSS OF EQUIPMENT COOLING

 PROBABLE CAUSES:

 COOLING FAN

N E T V I E W SESSION DOMAIN: CNM01 NETOP2 08/19/05 13:27:52

 NPDA-43S * EVENT DETAIL * PAGE 2 OF 4

 NTV90 10.71.22

 +--------+

 DOMAIN | SP |

 +--------+

 QUALIFIERS:

 1) ENTERPRISE Ent_Name

 2) SNMP GENERIC-TRAP NUMBER 6

 3) SNMP SPECIFIC-TRAP NUMBER 32

 Origin Address = 10.71.225.21:5644

 Community = public

N E T V I E W SESSION DOMAIN: CNM01 NETOP2 08/19/05 13:28:22

 NPDA-43S * EVENT DETAIL * PAGE 3 OF 4

 NTV90 10.71.22

 +--------+

 DOMAIN | SP |

 +--------+

 Enterprise Object ID = 1.3.6.1.4.1.12270

 Agent Address = 10.71.225.20

 Timestamp = 44225693

 1.3.6.1.4.1.12270.200.2.1.1.1 = 1493

 1.3.6.1.4.1.12270.200.2.1.1.2 = /L22/O50

N E T V I E W SESSION DOMAIN: CNM01 NETOP2 08/19/05 13:28:40

 NPDA-43S * EVENT DETAIL * PAGE 4 OF 4

 NTV90 10.71.22

 +--------+

 DOMAIN | SP |

 +--------+

 1.3.6.1.4.1.12270.200.2.1.1.3 = 2005-01-10T16:13:00

 Message = DIGIN ON OCCURRED

 FLAGS:

 SNMP TRAP

164 Customization Guide

UNIQUE ALERT IDENTIFIER: PRODUCT ID - 5697-ENV0 ALERT ID - 673BB726

Of course, NetView automation could be used to drive one or more commands

that scan the alert NMVT and take actions based upon the information found in it.

Alert-to-Trap Post-CDS Processing

The alert-to-trap service post CDS processing converts the Tivoli Enterprise

Console event that is produced from the CDS process into an SNMP trap.

All non-variable binding information in the trap is put into the constructed trap by

the alert-to-trap service directly, without the opportunity to customize it using the

CDS file. The only exception to this is the specific trap value.

The alert-to-trap adapter sets the non-variable binding fields as follows:

version

0

community

the value of the community statement from the alert-to-trap configuration

file (IHSAATCF)

enterpriseOID

the value of the enterpriseOID statement from the alert-to-trap

configuration file

IP address

the local host IP address

generic type

6

timestamp

0

The specific type is taken from the value of the specific event attribute that is

created by the CDS processing.

All other slot/value pairs are encoded into variable bindings on the trap. If the

name of the slot in the alert-to-trap adapter CDS file is a valid object id, the slot

name is used as the object id in the variable binding and the value of the slot

becomes the value of the variable binding. If the slot name in the CDS file is not a

valid object id, an object id of 1.3.6.1.4.1.2.5.1.4.1.4.x is used for the variable

binding and the value of the variable binding is slot=value, where slot is the CDS

file slot name and value is the CDS file value. The value of x is an index starting at

1 that is increased by one for each variable binding in the trap.

For example, a CDS file MAP statement that maps the slot name

1.3.6.1.4.1.2.5.1.4.1.4.1 to the value examplevalue has a variable binding in the

final trap with an object id of 1.3.6.1.4.1.2.5.1.4.1.4.1 and a value of

examplevalue.

A CDS file MAP statement that maps the slot name source to the value examplevalue

has a variable binding in the final trap with an object id of

1.3.6.1.4.1.2.5.1.4.1.4.1 and a value of source=examplevalue. The object id in

Chapter 8. Customizing the Event/Automation Service 165

this example assumes that there were no other variable bindings that required the

object id to be created by the alert-to-trap adapter, and therefore the starting index

for this object id is 1.

166 Customization Guide

Chapter 9. NetView Instrumentation

NetView instrumentation consists of subsystems. The topology display subsystem

is available if you have the NetView management console or the Tivoli Business

System Manager program installed. For any other subsystem, including the event

flow subsystem, the Tivoli Business System Manager program must be installed.

Considerations

The REXX programs for NetView instrumentation have been compiled with the

ALTERNATE option. If you access the REXX runtime library from NetView,

instrumentation REXX programs run in compiled mode. Otherwise, the REXX

alternate library is used and instrumentation REXX programs run in interpreted

mode. If the REXX runtime library or REXX alternate library is not accessible from

the pageable link pack area (PLPA), you need to modify the NetView start

procedure to access one of these libraries.

Events carrying management information to the topology server start as messages

containing keyword/value pairs. These messages issued by the API are BNH351I,

BNH352I, BNH353I, and BNH354I. These messages will be converted and

forwarded to a topology server.

Customization

The following samples were updated for application management instrumentation.

You may need to customize them for your environment.

v CNMSTYLE

Use CNMSTYLE %INCLUDE member CNMSTUSR or CxxSTGEN to add

automation table DSIAMIAT and autotask AUTOAMI.

Also, copy the following TOWER statement from CNMSTYLE to CNMSTUSR or

CxxSTGEN and remove the asterisk (*) from the AMI TOWER:

TOWER = *SA *AON *MSM *Graphics MVScmdMgt NPDA NLDM TCPIPCOLLECT

 AMI *TARA

v DSIAMIAT- in sample DSIPARM

A separate automation table for application management instrumentation. You

need to uncomment one of the following includes:

– %INCLUDE DSIAMIR - to route the BNH351-BNH354 messages to another

NetView. Use this for NetView Version 2 Release 4 and Version 3 Release 1.

– %INCLUDE DSIAMIT - to route the BHN351-BNH354 messages to a message

adapter (the Event/Automation Service should be started). You might need to

modify the PPI receiver ID of your Event/Automation Service message

adapter (default is IHSATEC). The message adapter converts and sends the

messages to the Tivoli Enterprise Console. The Tivoli Enterprise Console

program rules format and send the converted messages to the Tivoli Business

System Manager program.

Configure the message adapter by including IHSAAPMF in the message

adapter format file. Refer to theIBM Tivoli NetView for z/OS Installation:

Configuring Additional Components for more information.

Configure the Tivoli Enterprise Console event console by importing the files

interapp.baroc and nterapp_o.rls (interapp_o36.rls if using Tivoli Enterprise

© Copyright IBM Corp. 1997, 2007 167

Console 3.6) to your rules base if they were not previously added by the

ihsttec.sh script. Refer to the Tivoli Business Systems Manager library for

more information.

– %INCLUDE DSIAMIN - to route the BHN351-BNH354 messages directly to a

NetView management console topology server across NETCONV (this is the

default)
v DSIAMII- in sample DSIPARM

Application management instrumentation member

– On the focal point NetView (the NetView that routes messages to the

topology server or message adapter), code the NetView domain of all remote

NetViews (if any) with the RMTLU=luname keyword.

– Customize the monitor default threshold specifications and polling intervals

as appropriate for your environment. Note that the defaults defined here

apply to all instances of a component or connection type. You can change

threshold specifications and polling intervals for a specific instance by

invoking the set threshold or set polling interval tasks.

You can define multiple threshold specifications. Each one consists of three

values. The first value is the threshold value, the second value is the operator,

the third value is the severity of the threshold event. For example:

BEGIN_THRESHOLD

 SS=Tivoli;TME10NVCNMTAMEL;1.2

 MONITOR=(’STATE’UP,6,0,DOWN,6,5 MVR=CNMETDMV 10)

 MONITOR=(’IPC QUEUE’ 25,8,2)

 MONITOR=(’VIEWMGR QUEUE’ 25,8,2)

 MONITOR=(’VSTATMGR QUEUE’ 25,8,2)

END_THRESHOLD

In the example, for the IPC QUEUE monitor, when the current value crosses

above (operator 8) 25, a WARNING (2) threshold event is sent.

The meaning of each value is:

1. The threshold value against which the current monitor value is compared.

2. The comparison operator used to compare the current monitor value

against the threshold value:

0 = greater than

1 = greater than or equal

2 = less than

3 = less than or equal

4 = equal

5 = not equal

6 = changes to

7 = changes from

8 = crosses above

9 = crosses below

10 = matches

11 = does not match

3. The severity of the threshold event to be sent if a match occurs follows:

0 = "NORMAL"

1 = "INFORMATIONAL"

2 = "WARNING"

3 = "SEVERE"

4 = "CRITICAL"

5 = "FATAL"

– The following list details what you can customize in DSIAMII to activate one

or all of the components.

- Hardware monitor component

INIT=CNME3016(60)

TERM=CNME3017()

168 Customization Guide

The parameter for CNME3016 is the heartbeat_interval.

- Event/Automation Service components (message adapter, alert adapter,

event receiver)

INIT=CNME9503(60 IHSAEVNT.IHSATEC)

TERM=CNME9531()

Change the INIT=CNME9503 statement to include the procname and PPI

receiver ID of your adapters.

- MSM agent instrumentation

INIT=FLCAPMIN(60)

TERM=FLCAPMTR()

The parameter for FLCAPMIN is the heartbeat_interval.

- Topology display subsystem components. These DSIAMII members have

multiple statements for instrumentation initialization. The statements are as

follows:

 INIT=CNMETDIN(HBEAT,60)

 INIT=CNMETDIN(QDEPTH,10)

 INIT=CNMETDIN(GMFHS,CNMSJH10.C)

 INIT=CNMETDIN(GPARM,DOMAIN=CNM01)

 INIT=CNMETDIN(RODM,EKGXRODM.X)

 INIT=CNMETDIN(COLDPARM,TYPE=COLD,INIT=EKGLISLM)

 INIT=CNMETDIN(WARMPARM,TYPE=WARM)

 INIT=CNMETDIN(COMPLETE)

The parameters are:

v HBEAT specifies the heartbeat. It is required.

v QDEPTH specifies the queue depth. It is required.

v GMFHS specifies the GMFHS startup procedure and its alias. It is

required.

v GPARM specifies the parameters to be used with the GMFHS start-up

procedure. It is not required but if the domain value is not specified

here, GMFHS will look to find the domain in the initialization member

DUIGINIT or in the specified GMFHS start-up procedure.

v RODM specifies the RODM start-up procedure and its alias. It is

required.

v COLDPARM specifies the parameters for a RODM start-up procedure

when a user chooses to do a RODM cold start. It is not required.

v WARMPARM specifies the parameters for a RODM start-up procedure

when a user chooses to do a RODM warm start. It is not required.

If you create instrumentation, you should modify DSIAMII to add default

threshold specifications and calls to instrumentation initialization and

termination routines. Refer to the Tivoli Business Systems Manager library for

API descriptions.

Starting and Stopping Instrumentation

To start instrumentation, issue the INITAMI command on the focal point NetView

(the NetView that routes messages to the message adapter). INITAMI is

automatically issued on NetViews defined as remote in DSIAMII. The INITAMI

command starts the AUTOAMI on the focal point NetView (if not already started).

The console identifier for AUTOAMI is set to AMIxxxxx where xxxxx is the five

rightmost characters of the NetView domain. Therefore, the console will be unique

within a sysplex, and the commands issued from the autotask will correlate.

Chapter 9. NetView Instrumentation 169

Instrumentation is not, however, forced to run on AUTOAMI. Therefore, in

environments with multiple NetViews in a system, or in a sysplex, the INITAMI

command should be issued on autotask AUTOAMI.

The INITAMI command also establishes a RMTCMD session with any NetView

whose domain name is coded on the RMTLU statement in DSIAMII. This will log

on the AUTOAMI autotask on that NetView.

To stop instrumentation, issue the TERMAMI command. TERMAMI is

automatically issued on NetViews defined as remote in DSIAMII. In addition, stop

the AUTOAMI autotask on the focal point NetView. This ends the RMTCMD

sessions established by INITAMI.

The topology server may issue instrumentation related commands after issuing the

TERMAMI command. However, the AUTOAMI autotask must be started for this to

work.

Customizing the IBM Tivoli Enterprise Console

If you route the instrumentation messages to the IBM Tivoli Enterprise Console

through the Event/Automation Service message adapter, you will need to

customize the console.

ACB Monitor Customization

The application control block (ACB) Monitor focal point receives status updates for

ACBs from the focal point Virtual Telecommunications Access Method (VTAM)

and entry point VTAMs. If used in conjunction with the Tivoli Business Systems

Manager program, the ACB Monitor discovers the following:

v generic resources

v user-specified applications,

v applications matching user-specified models

The ACB Monitor also monitors the following:

v ACB status

v session count

v persistent recovery events for ACB applications

If used in conjunction with the Tivoli Business Systems Manager program or with

the NetView management console TN3270 management, the ACB Monitor

discovers TN3270 servers and clients. Optionally, ACB data can be saved in a DB2®

database.

Define one ACB Monitor focal point for each System complex (or sysplex, the set

of z/OS systems). To fully enable instrumentation of application dynamics in a

sysplex environment, define all other images in the sysplex to be entry points of

that focal point.

Saving ACB data in DB2 enables you to query telnet clients by IP address, host

name, or application name (using the Locate TN3270 Client TBSM tasks). This also

enables you to change your list of critical TN3270 client resources without

restarting the ACB Monitor.

170 Customization Guide

Notes:

1. To save ACB data to DB2, DB2 must be operational on the ACB Monitor focal

point, and the NetView SQL pipe stage must be enabled.

2. The AMI must be enabled on the ACB Monitor focal point to enable the ACB

Monitor instrumentation.

Parts

The parts that are shipped as part of the ACB Monitor are listed in Table 19.

 Table 19. Tivoli Business Systems Manager parts list

Part Name Language Function

TN3270.BSDF MIF TN3270 business system description file

TN3270.BCDF MIF TN3270 business component description file

TN3270.BMDF MIF TN3270 business mapping description file

TN3270.CDF MIF TN3270 component definition file

Ltn3270loc.ddf DDF Locate TN3270 client local dialog definition

Ltn3270glob.ddf DDF Locate TN3270 client global dialog definition

TN3270.html HTML Help file

GENRSC.BSDF MIF Generic Resources business system description

file

GENRSC.BCDF MIF Generic Resources business component

description file

GENRSC.BMDF MIF Generic Resources business mapping

description file

GENRSC.CDF MIF Generic Resources component definition file

GENRSC.html HTML Help file

VTAMAPPL.BSDF MIF VTAM Application business system

description file

VTAMAPPL.BCDF MIF VTAM Application business component

description file

VTAMAPPL.BMDF MIF VTAM Application business mapping

description file

VTAMAPPL.CDF MIF VTAM Application component definition file

VTAMAPPL.html HTML Help file

Defining a Focal Point

To define an ACB Monitor focal point, perform the following steps:

1. Customize the automation table in sample DSIAMIAT. Uncomment the following

include: %INCLUDE CNMSVTFT.

2. Customize the AMI configuration member in sample DSIAMII using the

following steps:

a. Code the NetView domain name of each ACB Monitor entry point on

AMONLU=keyword.

b. Do you want to save ACB data to DB2?

v If yes, perform steps 2c and 2d on page 172.

v If no, go to step 2e on page 172.
c. Code AMONDB2=y.

Chapter 9. NetView Instrumentation 171

d. Code the DB2 volume on DB2VOL=keyword.

e. Code the DB2 volume catalog on DB2VCAT=keyword.

f. Code the DB2 buffer pool on DB2BUFFERPOOL=keyword for each predefined

VTAM Application to be monitored.
3. Customize the list of VTAM applications and models to be discovered in

sample DSIAMII as follows:

a. Code the application name on APPLCOMPONENT=applname for each predefined

VTAM application to be monitored.

b. Code the model name on MODELCOMPONENT=modelname for each VTAM model

to be monitored.
4. Do you want to save ACB data to DB2?

v If no, go to step 5.

v If yes, customize the DB2 parameters in sample DSIAMII by completing the

following steps:

a. Code AMONDB2=Y.

b. Code the DB2 volume on DB2VOL=keyword.

c. Code the DB2 volume catalog on DB2VCAT=keyword.

d. Code the DB2 buffer pool on DB2BUFFERPOOL=keyword.
5. Customize the default thresholds in sample DSIAMII. You can customize any of

the following:

v when threshold events are issued for the ACB status monitor

v the severity of the events issued for the ACB status monitor

v the session count monitor

v the persistent recovery monitor

Customization in DSIAMII defines default thresholds. You can also customize

thresholds for each instance (icon) with the set threshold task.

For example, if you want to change the threshold severity of CONCT and RESET

states to SEVERE (3) rather than INFORMATIONAL (1) for APPLCOMPONENT and

MODELCOMPONENT Applications, change the following line:

ACT,6,0,CONCT,6,1,RESET,6,1,INACT,6,2,UNKNOWN,6,2,PINACT,6,4,PACT,6,4

To:

ACT,6,0,CONCT,6,3,RESET,6,3,INACT,6,2,UNKNOWN,6,2,PINACT,6,4,PACT,6,4

Or, if you want a WARNING threshold event to be issued when session counts

exceed 999, and a NORMAL threshold event when session counts fall below 1000,

change the following line:

MONITOR=(’SESSION COUNT’ 0,1,0 EVENT)

To:

MONITOR=(’SESSION COUNT’ 999,8,2,1000,9,0 EVENT)

6. Install the ACB Monitor VTAM exit. Link edit CSECT CNMIETMN into load module

ISTIETMN in the VTAMLIB DD for VTAM.

Defining An Entry Point

To define an ACB Monitor entry point, perform the following steps.

Step 1. Customize the automation table in sample DSIAMIAT. Uncomment the

following include: %INCLUDE CNMSVTET

172 Customization Guide

Step 2. Install the ACB Monitor VTAM exit. Linked CSECT CNMIETMN into load

module ISTIETMN in the VTAMLIB DD of VTAM.

Starting the VTAM ACB Monitor

Start the AMI by issuing the INITAMI command on the focal point NetView to

enable instrumentation for:

v generic resource

v TN3270 servers

v APPLCOMPONENT VTAM applications

v MODELCOMPONENT VTAM applications

To start the VTAM ACB Monitor, issue the INITAMON command on the focal

point NetView. The focal point and all entry points identified on the

AMONLU=keyword will be activated.

After the VTAM ACB Monitor has been activated, issue the INITAMON

entry_point command, to activate an additional entry point, where entry_point is the

NetView domain name of the entry point.

Recovering a VTAM ACB Monitor Entry Point

When the RMTCMD LU 6.2 session between an entry point and the focal point

fails, the entry point is automatically stopped. When the error that caused the

communication failure between the two NetViews has been corrected, issue the

INITAMON entry_point command on the focal point to recover the entry point.

Stopping the VTAM ACB Monitor

To stop the VTAM ACB Monitor, issue the TERMAMON command on the focal

point NetView. The focal point and all active entry points will be deactivated.

To stop a specific entry point, issue the TERMAMON entry_point command, where

entry_point is the NetView domain name of the entry point. Status for all of the

applications on the VTAM associated with that NetView will be removed from the

database.

Chapter 9. NetView Instrumentation 173

174 Customization Guide

Chapter 10. Writing a Java Application for the NetView 3270

Management Console

IBM eNetwork Host-On-Demand provides a host access class library to enable

users to write Java™ applications to automate NetView 3270 management console

(NMC-3270) sessions. These automation applications can be used to interact with

the NMC-3270-provided sessions for routine tasks. The automation applications

can also be used from GEM or the NMC.

Providing a Host Access class library application for the NMC-3270 involves the

following steps:

v Writing the application

v Launching the application either at NMC-3270 startup or from a dialog.

Refer to the IBM eNetwork Host Access Class for more information. Information is

also available from the NetView 3270 management console menu bar (select

Books).

Writing a NetView 3270 Management Console Host Access Class

Library Application

The Host Access Class Library (HACL) classes associated with a particular

NetView session can be obtained from an instance of ECLSession.

To do this, the application must implement FLB_NVApplInterface. This interface

provides the methods for passing the active session to the application which is

done through the init method of the interface.

After getting a session object in the init method, you can gain access to the

presentation space and interact with it. The presentation space is encapsulated in

the ECLPS class, and an instance of it can be obtained using the GetPS() method on

ECLSession. ECLPS provides methods that:

v Manipulate text

v Perform searches

v Send keystrokes to the host

v Work with the cursor.

The following sample gets an instance of ECLPS from the session described above.

public void init(ECLSession session)

 {

 ps = session.GetPS();

 oia = session.GetOIA();

 }

When an instance of ECLPS is established, you can register as a

com.ibm.eNetwork.ECL.event.ECLPSListener to receive notification of presentation

space changes. Registered listeners are notified when the presentation space is

changed. This event notification model is the primary mechanism used by an

application to drive interactions with the presentation space.

© Copyright IBM Corp. 1997, 2007 175

The sample code below registers the current class with the instance of ECLPS.

try {

 ps.RegisterPSEvent(this);

 } catch(ECLErr e) { System.out.println(e.GetMsgText()); }

Even though you are registered for presentation space events, you still need to

implement com.ibm.eNetwork.ECL.event.ECLPSListener interface.

The ECLPSListener interface is comprised of three methods which handle different

kinds of events occurring within the presentation space. The PSNotifyEvent()

method handles normal, non-error events and is the main method for receiving

and handling events. The PSNotifyStop() method handles stop events, and the

PSNotifyError() method handles errors which occur during event generation.

The following sample defines a PSNotifyEvent() method which prints out screen

updates.

public void PSNotifyEvent(ECLPSEvent evt)

 {

 try

 {

 char[] temp = new char[1921]; // Screen size is assumed to be 24x80

 ps.GetScreen(temp, 1920, 1, 1920, ps.TEXT_PLANE);

 System.out.println(new String(temp));

 ps.UnregisterPSEvent(this);

 }

 catch (Exception ECLErr)

 {

 System.out.println("ECLErr Exception --> " + ECLErr.toString());

 }

FLB_NVApplInterface also requires you to implement three other methods

(addListener, removeListener, and closeDown) which allow the application to listen

for a closeDown event from the NMC-3270. The closeDown event is triggered when

the NMC-3270 is ready to close the session. The closeDown method allows the user

to clean up before the session ends. The removeListener method stops the

application from listening for closeDown events from the NMC-3270.

The following is a sample implementation:

public void addListener(FLB_NVApplListener listener){

 this.listener = listener ;

 }

public void closeDown(){

 //Your clean up code goes here.

 }

public void removeListener(FLB_NVApplListener listener){

 this.listener = null;

 }

Finally, to notify the NMC-3270 of application termination you must code

following in your termination or finalize routine:

 listener.applClosing(this);

176 Customization Guide

Building Host Access Class Library Applications

This section describes how to build a Java application which uses the Host Access

Class Library (HACL). The source code preparation and compiling requirements

are described.

Source Code Preparation

Programs that use HACL classes must import the HACL package to obtain class

definitions and other compile-time information. The HACL package can be

imported into a Java source file using the following statement:

import com.ibm.eNetwork.ECL.*;

import com.ibm.eNetwork.ECL.event.*;

import com.ibm.eNetwork.beans.HOD.*;

import src.ibmflb.*;

Compilation

To compile the new Java source file, the CLASSPATH must be updated to include

the directory containing the HACL package. If HACL was installed in a Windows

environment, the CLASSPATH should already be updated. If HACL was not

installed in a Windows environment, you will have to either update the

CLASSPATH environment variable manually or use the ’-classpath’ parameter of

the Java compiler, javac, to specify the location of HACL.

Running the HACL Application

The NetView 3270 management console provides two ways to load and run a

user-defined application. A user application can be launched from the Execute

HACL App dialog or as an Initial HACL App when a session is started. The Run

Application dialog can be displayed from the toolbar. The dialog prompts for the

name of a user-defined class (fully-qualified class name), constructs an instance of

the class using the default constructor, and gives the class access to the current

NetView session in the init method. If you do not know the class name you can

use the find button to locate the class. In this instance the class will be freshly

loaded. The Initial HACL App can be specified in the session configuration

window.

Note: When an application that uses HACL is run, the directory containing the

HACL package must be found in the path specified by the CLASSPATH

environment variable.

Helper Class

The NetView 3270 management console provides a helper class to help an

application writer get ECLSessions for various console sessions (for example, the

hardware monitor and session monitor).

The following is a sample:

 ECLSession session = FLB_HACLhelper.getSession("NPDA");

 ECLPS ps = session.GetPS();

 ECLOIA oia = session.GetOIA();

Chapter 10. Writing a Java Application for the NetView 3270 Management Console 177

Sample Applications

The following two sample applications are shipped with the NetView 3270

management console (in the examples subdirectory):

v FLB_HACLsample.java

This sample enters the command ald in the input area of the screen.

v FLB_ScreenSearchSample.java

This sample searches for the word alert and responds with an ALD command.

178 Customization Guide

Chapter 11. Designing HTML Files for the NetView Web Server

NetView provides a full-function Web application server that accepts commands

through a Web browser interface, displays TCP/IP trace and SNMP data, and

includes NetView Help. You can design HTML files for your own Web page.

Referencing Files and Commands

The HTML for accessing NetView from the Web browser is dynamically generated

at the Web application server.

The HTML (including user-written HTML) can be divided between the Web

application server (workstation) and the NetView for z/OS host. This can include

referencing workstation files from host HTML:

Understanding the Base URL

The following is a typical URL when browsing the NetView program:

https://Web_application_server:port/netview/domain_ID/

where Web_application_server:port is the TCP host name and port number of the

HTTPS server on which the NetView Web application is installed, netview is the

NetView Web application context root, and domain_ID is the domain ID of the

NetView for z/OS program to which you want to connect.

The URL in the above example is considered to be the base URL. If the URL

contained a question mark, any remaining data is considered query data and is not

considered to be part of the base URL.

Referencing Workstation Files on the Web Application Server

References to other sources should be relative to the base URL. For files on the

Web application server, use ../ to back up to the /netview/ directory.

Referencing NetView Commands

This example

https://Web_application_server:port/netview/domain_ID/?DSICMDS+=+command

specifies the NetView command to be issued. Any blanks in the command must be

specified as a plus sign (+) so that the command will be correctly parsed. The

NetView Web server (DSIWBTSK) changes the plus signs to blanks before issuing

the command.

Adding Tasks and Links to the Portfolio

You can customize the NetView Web application by adding tasks (links) for your

own Web pages or for other Web pages. To add tasks to the portfolio, use the

webmenu statement; for more information, see the IBM Tivoli NetView for

z/OS Administration Reference or the CNMSTYLE %INCLUDE member

CNMSTWBM.

For example, if you want to add a new group of tasks, add an ID for your group

to the webmenu.groups statement that already exists. To assign a name for your

© Copyright IBM Corp. 1997, 2007 179

group, use the webmenu.group_ID.name statement. To assign one or more tasks

(links) to your group, identify the IDs of your tasks with the

webmenu.group_ID.groups statement.

To define each task in your new group:

v Assign a name for the task with the webmenu.group_ID.task_ID.name statement.

v Assign an action for the task with the webmenu.group_ID.task_ID.action

statement.

For example, to call a NetView-based HTML-generating routine named myhtml, use

the following webmenu statements:

webmenu.group_ID.task_ID.name = My HTML

webmenu.group_ID.task_ID.action =

 https://Web_application_server:port/netview/domain_ID/?DSICMDS=myhtml

To launch a Web site (such as http://www.ibm.com/), you must include http: (or

https:) and code each slash as &SLASH. in the action statement, as shown in the

following webmenu statement:

webmenu.group_ID.task_ID.action = http:&SLASH.&SLASH.www.ibm.com/

Notes:

1. For an example of launching a Web site, see the webmenu statements for the

Launch Procedures task in the CNMSTYLE %INCLUDE member CNMSTWBM.

2. Ensure that user-defined uniform resource identifiers (URIs) do not contain 2

consecutive slashes; instead, a URI must specify 2 consecutive slashes in one of

the following ways:

v &SLASH./

v /&SLASH.

v &SLASH.&SLASH.

Using REXX to Generate HTML

NetView supports an interface similar to the Common Gateway Interface (CGI) for

REXX procedures. Use the REXX function CGI () to determine whether your

procedure was invoked by the NetView Web server. If CGI () returns 1, the

procedure can create a dynamic Web page by ensuring that the beginning

characters of the first line of output are either:

v <HTML

v <!DOCTYPE

Note: HTML and DOCTYPE must be in uppercase.

In this case, the NetView program does not modify or add to the output. It is

recommended that you create output using the pipe stage CONSOLE ONLY to

prevent the logging and automation of the HTML output.

Note: The CGI function is the preferred method to provide customization.

To improve performance, you can place static HTML or binary files on the Web

application server.

180 Customization Guide

http://www.ibm.com/

Chapter 12. Customizing Using Common Base Events

Common Base Events are XML-based representations of system events, such as

status changes or problem reports. NetView supports converting messages and

MSUs into XML-formatted events and forwarding them to an event server for

storage and distribution to interested parties. The IBM Tivoli NetView for

z/OS Automation Guide contains a section on automation involving Common Base

Events. Customization for this support involves modifying and creating the XML

templates that NetView uses when messages and MSUs are converted. The

templates provide an easy way to control what information from the message or

MSU is contained in the event.

The Common Base Event format is defined by schema, described in the

Autonomic Computing Toolkit Developer’s Guide, SC30-4083. In that publication,

locate the section entitled ″Understanding Common Base Event Specification″

contained in the section entitled ″Common Base Event XML Schema″.

XML Formats

NetView provides a predefined set of event templates that allow users to create

common base events using automation table actions or, in the case of alerts, using

hardware monitor filter settings. The templates are shipped in samples file

CNMSCBET. Templates are loaded into storage by NetView when the

CBE.TEMPLATES statement in CNMSTYLE is processed, either at initialization or

as a result of a RESTYLE CBE command.

Customization of events involves modifying or adding XML templates for the

events or modifying events as part of automation table processing. For examples of

modifying events during automation, see sample CNMSCBEA. The remainder of

this section discusses the event templates NetView provides, and how to modify

them. The templates are XML skeletons that use several variable symbols that are

filled in at run-time with data from messages or MSUs. To successfully work with

the templates, some knowledge of the XML format of events is needed. For full

details, see the previously referenced section in the Autonomic Computing Toolkit

Developer’s Guide.

The major XML elements of a Common Base Event include the following:

The CommonBaseEvent element

This element is the root of the Common Base Event. It contains many

attributes that describe the event, including

v A unique global identifier

v The creation time of the event

v A textual description of the event (the msg attribute)

The NetView-supplied default for the CommonBaseEvent element is the

root template in CNMSCBET.

The reportingComponent element

This identifies the system component that generates the event. It includes

information such as product name and network location. It can also

provide detail such as thread and process identifiers. For events that are

generated by NetView, this component typically specifies NetView.

© Copyright IBM Corp. 1997, 2007 181

The sourceComponent element

This identifies the system component that caused the event to be

generated. It can, for example, identify a z/OS job that issued a message

that was used to generate an event.

The situation element

This provides a high-level view of the type of event, such as a

startSituation event generated as a result of a component starting up. The

templates repsitm (for messages) and repsita (for MSUs) are NetView’s

supplied defaults for this element.

ExtendedDataElements

These provide extensions of the event to hold product-specific information.

NetView provides a number of extensions that can be used to hold

additional information about the message or alert that is generating the

event.

CBE Format Rules

A valid CBE XML document is described by the XML schema in Autonomic

Computing Toolkit Developer’s Guide, SC30-4083. Briefly, XML event elements

are contained with the CommonBaseEvent element. The following elements can be

included in this sequence:

contextDataElements optional

extendedDataElements optional

associatedEvents optional

reporterComponentId required, unless it is the same as the source

component, in which it is not included

sourceComponentId required

msgDataElement optional

situation required

Template File CNMSCBET

The NetView template sample CNMSCBET provides several templates that define

complete events, such as msgdefault and msudefault. Other elements only define

bits and pieces of an event, such as extended data elements, that can be combined

to form a complete event. These templates are intended for use with the CBETEMP

global order on the pipe EDIT stage. This order can be used with the CBE

automation table action to read in templates and construct complete events. The

simplest use of CBETEMP is to read in one of the complete event templates such

as msgdefault, but the order can be used to read templates that define bits of an

event that are then constructed in the edit specification.

The template file itself is an XML document. The <cbedata name=’xxxx’> tag

defines the event XML data and provides the opportunity for naming this data.

The value of the name attribute is used on the CBETEMP global edit order and in

<?include> processing. The template file consists of two XML elements, cbedata and

templates, and one processing instruction, include. In nearly all cases, the XML

defined by cbedata is contained within an XML CDATA section. The XML markup

within the CDATA sections is treated as pure character data when the template file

is loaded by NetView. This XML is not processed or parsed as XML until an event

is actually constructed.

182 Customization Guide

The <?include name=’xxx’?> defines a processing element that pulls in a <cbedata>

element defined elsewhere in the templates file, making it possible to predefine an

XML element that can be used in multiple templates. As an example, note that

root is used by both msgdefault and msudefault.

Include processing is done when the CBE.TEMPLATES statement in CNMSTYLE is

being processed. The resulting XML templates are stored internally in memory for

reference by CBETEMP. The DISPCBET command can be used to display the

in-memory contents of the templates after they have been processed and loaded.

This is an example of a template:

<cbedata name=’root’>

<![CDATA[

<CommonBaseEvent

elapsedTime=’0’

version=’1.0.1’

msg=’&TEXT’

priority=’&PRIORITY’

severity=’&SEVERITY’

repeatCount=’0’

sequenceNumber=’0’

>

]]>

</cbedata>

This element defines the beginning of an event. Other templates use the include

processing order to pull in this template. For example:

<cbedata name=’msgdefault’>

<!-- Beginning of CBE goes here -->

<?include name=’root’?>

Both <?include and <cbedata use a name=’xxxx’ attribute. Enclose this value in

single quotes. The name attribute value is not case-sensitive. However, the XML

element names (cbedata, include, and templates) within the file are case-sensitive,

as is the XML markup contained with the CDATA section.

NetView provides several templates that construct a complete event. This is the

msgdefault template:

<cbedata name=’msgdefault’>

<-- Beginning of CBE goes here -->

<?include name=’root’?>

<!-- Context Data Elements, if any, go here -->

<!-- Extended Data Elements start here -->

<?include name=’nvobjtypems’?>

<?include name=’correlate’?>

<?include name=’actionmg’?>

<?include name=’mlwtolns’?>

<!-- Associated Events, if any, go here -->

<!-- Reporting component goes here -->

<?include name=’nvrepcompmsg’?>

<! -- Source component goes here -->

<?include name=’nvsrccompmsg’?>

<!-- Message Data Element goes here -->

<?include name=’nvmsgdataelm’?>

<!-- Situation goes here -->

<?include name=’repsitm’?>

<?include name=’tail’?>

</cbedata>

Chapter 12. Customizing Using Common Base Events 183

Codepage considerations

The CNMSCBET file is encoded using code page 037 code (US EBCDIC). The code

that parses it can work with code page 037, code page 1047, or code page 939. The

major differences in the code pages are the square bracket characters. These map to

different hexadecimal code points in code pages 037, 1047, and 939. The encoding

is specified by the encoding attribute on the XML processing instruction in the file.

The specified encoding must match the characters used in the file. The encoding

value is specified as an attribute on the xml instruction. For example

<?xml version="1.0" encoding="ebcdic-cp-us"?>

The valid values for encoding, and the code pages that they map to are:

ebcdic-cp-us 037

IBM-037 037

IBM037 037

IBM-1047 1047

IBM1047 1047

X-EBCDICJapaneseAndJapaneseLatin

939

IBM-939 939

IBM939 939

The characters used for square brackets, especially in CDATA sections, must

correspond to the proper hexadecimal encodings for the specified code page. In

codepage 037, the left bracket character [is X'BA', the right bracket character] is

X'BB'. However, in code pages 1047 and 939, the left bracket character [is X'AD',

the right bracket character] is X'BD'.

If square brackets are used within the CDATA sections, map them to the 037

encoding on English systems and to the 1047 or 939 encoding on Japanese systems,

regardless of the encoding specified on the xml instruction. The character stream

containing the bracket characters is converted based on code page 037 or 939 when

the XML event is processed, depending on whether the system is English or

Japanese. To avoid incompatibilities, the codepage-independent sequence of [

can be used for left square brackets and] for right square brackets. For

example

<cbedata name=’example’>

<![CDATA[

<extendedDataElements name=’example’ type=’string’>

<values>This code will have a bracket character coded as [’ in it.</values>

</extendedDataElements>

]]>

</cbedata>

Note: The [and the] cannot be used for the square bracket characters

on the CDATA sections.

Predefined Variables

Many of the templates reference variables such as &DOMAIN. The variables are

substituted at runtime with text strings such as NTVE4 for &DOMAIN. If data is

not available for a variable, nothing is returned. Most but not all of the variables

are patterned after automation table conditionals. Most but not all automation table

conditionals are supplied. Some additional variables are supplied. Bit items are

184 Customization Guide

presented as binary strings; for example a bit value of one is the character 1. For

information about the conditionals and possible values, refer to the NetView

Automation Guide chapter on the automation table.

The following variables are available:

&ACTIONMG Indicates action message

&ALRHOSTNAME For alerts, the SNA name of the node where the

alert originated

&AUTOTOKE MVS message automation token

&AUTOMATED Indicates whether NetView has performed

automation based on the message

&CART MVS command/response token

&CURSYS The local name of the z/OS system

&DESC Message descriptor codes

&DOMAIN Current NetView domain ID

&DOMAINID For messages, the NetView domain where the

message originated

&HDRMTYPE NetView indicator of message type

&HIER Alert name/type list

&HMASPRID For alerts, the hardware or software product set

identifier of the

&HMBLKACT Block ID and action code of an alert

&HMCPLINK Complex link indicator

&HMEPNAU NAU name of entry point node where alert

originated

&HMEPNET Network of the entry node where alert originated

&HMEPNETV Specifies whether the entry point node was a

NetView

&HMEVTYPE MSU event type

&HMFWDED Indicates whether alert forwarded using LUC

&HMFWDSNA Indicates whether alert forwarded using LU 6.2

&HMGENCAU General cause code of an MSU

&HMONMSU Indicates whether MSU was automated

&HMORIGIN For alerts, the last name in the name/type

hierarchy list

&HMSECREC Indicates whether secondary recording performed

for a MSU

&HMSPECAU Specific component code of an MSU

&HMUSRDAT User data from subvector 33 of an MSU

&JOBNAME The originating z/OS job name associated with a

message

Chapter 12. Customizing Using Common Base Events 185

&JOBNUM The originating z/OS job number associated with a

message

&KEY Key associated with a message

&MCSFLAG MVS multiple console support flags

&MSGAUTH Authorized program indicator

&MSGCATTR MVS message attribute flags

&MSGCMISC MVS miscellaneous routing flags

&MSGCMLVL MVS message-level flags

&MSGCMSGT MVS message-type flags

&MSGCOJBN Originating job name

&MSGCPROD z/OS level

&MSGCSPLX Sysplex sending message

&MSGDOMFL MVS DOM flags

&MSGGDATE Date associated with a message

&MSGGMFLG MVS general message flags

&MSGGMID MVS message ID

&MSGGTIME Time a message was issued

&MSGID For messages, the message ID

&MVSLEVEL Current MVS product level

&MVSRTAIN MVS AMRF flags

&MSGSCRNM Source name from source object

&NETID VTAM network identifier

&NETVIEW NetView version and release

&NVASID The z/OS address space identifier of the local

NetView

&NVCLOSE NetView CLOSE processing flag

&NVHOSTNAME The fully qualified name of the TCP stack NetView

is using

&NVJOBNAME The z/OS job name of the local NetView

&NVTASKID The NetView name of the task under which a

message is being automated

&OPID NetView operator or task ID

&OPSYSTEM Operating system

&PRIORITY An integer between 0 and 100 representing the

importance of an event

&ROUTECD MVS routing codes

&SEVERITY An integer between 0 and 70 representing the

severity of the event

&SYSID The z/OS system ID for the origin of a message

186 Customization Guide

&SYSPLEX Local z/OS sysplex name

&TEXT The first (or only) line of a text message, or the

long error description

&VTAM VTAM level

&VTCOMPID VTAM component identifier

Chapter 12. Customizing Using Common Base Events 187

188 Customization Guide

Appendix A. Color Maps for Hardware Monitor Panels

Table 20 lists the panel name, panel number, and color map for hardware monitor

panels. See Chapter 6, “Customizing Hardware Monitor Displayed Data,” on page

77 for more information on color maps.

Note: Color maps for hardware monitor help and command description panels are

available only in prior releases of NetView. Also, color maps beginning with

BNJMP1 are no longer supported.

 Table 20. Color Maps for Hardware Monitor Panels

Panel Name Panel Number Color Map

Alerts-Dynamic

Alerts-History

Alerts-Static

Common Format Glossary

NPDA-30A

NPDA-31A

NPDA-30B

NPDA-02C

BNJMP30A

BNJMP31A

BNJMP30A

BNJMP2C1

Controller Information Display

Controller (CTRL) Selection Menu

Downstream Member of Token-Ring LAN Fault Domain

NPDA-02E

NPDA-CTRL

NPDA-44B

BNJMP02E

BNJMPCTL

BNJMP4BH

DSU/CSU and Line Status DSU/CSU and Line Parameters Link

Segment Level n

NPDA-22C, page 1 BNJMPDL1

DSU/CSU and Line Status Remote DSU/CSU Interface-Remote

Device Status-Link Segment Level n

NPDA-22C, page 2 BNJMPDL2

DSU/CSU and Line Status Configuration Summary, Link Segment

Level n

NPDA-22C, page 3 BNJMPDL3

Event Detail

Event Detail

Event Detail

Event Detail

Event Detail

NPDA-43B

NPDA-43M

NPDA-43N, 43Q

NPDA-43C

NPDA-43T

BNJMP43B

BNJMP43M

BNJMP43N

BNJMP43C

BNJMP43T

Event Detail

Event Detail

Event Detail

Event Detail, alternate

Event Detail, alternate

NPDA-43A

NPDA-43P NPDA-43S

NPDA-43T NPDA-43S

BNJMP43A

BNJMP43P BNJMP43S

BNJMP434 BNJMP433

Event Detail for

BSC Line

Event Detail for BSC Station

Event Detail for BSC/SS Line

Event Detail for BSC/SS Station

Event Detail for Channel-Attached Station

NPDA-43T NPDA-43T

NPDA-43B NPDA-43B

NPDA-43B

BNJMP43T BNJMP43T

BNJMP43B BNJMP43B

BNJMP43B

Event Detail for Channel Link

Event Detail for Instruction Exception

Event Detail for Miscellaneous Interrupts

Event Detail for Scanner-Type 1/4

Event Detail for Scanner-Type 2/3

NPDA-43B NPDA-43J

NPDA-43K

NPDA-43G

NPDA-43H

BNJMP43B BNJMP43J

BNJMP43D

BNJMP43D

BNJMP43D

Event Detail for Scanner-Type 1

Event Detail for Scanner-Type 2

Event Detail for Scanner-Type 3

Event Detail for Scanner-Type 4

Event Detail for SDLC Line

NPDA-43D

NPDA-43E NPDA-43F

NPDA-43I NPDA-43P

BNJMP43D

BNJMP43D

BNJMP43D

BNJMP43D

BNJMP43B

© Copyright IBM Corp. 1997, 2007 189

Table 20. Color Maps for Hardware Monitor Panels (continued)

Panel Name Panel Number Color Map

Event Detail for

SDLC Line

Event Detail for SDLC Station

Event Detail for SDLC Station

Event Detail for 3270 Non-SNA Controller

Event Detail Menu Event Detail Menu

NPDA-43T NPDA-43B

NPDA-43T NPDA-43L

NPDA-43R

NPDA-43R

BNJMP43T BNJMP43B

BNJMP43T BNJMP43L

BNJMP43R

BNJMP43R

Event Detail Menu, alternate

Event Detail Menu for BSC Line

Event Detail Menu for BSC Line, alternate

Event Detail Menu for BSC Station

Event Detail Menu for BSC Station, alternate

NPDA-43R

NPDA-43R NPDA-43T

NPDA-43R NPDA-43T

BNJMP432 BNJMP43R

BNJMP434 BNJMP43R

BNJMP434

Event Detail Menu for SDLC Line Event

Detail Menu for SDLC Line, alternate

Event Detail Menu for SDLC Station

Event Detail Menu for SDLC Station, alternate

Event Summary

NPDA-43R NPDA-43T

NPDA-43R NPDA-43T

NPDA-42A

BNJMP43R BNJMP434

BNJMP43R BNJMP434

BNJMP42A

Event Summary

Event Summary

Glossary displays

HELP Menu

Hexadecimal Display of Error Record

NPDA-42B

NPDA-42C (many

displays) NPDA-44C

NPDA-02B

BNJMP42B

BNJMP42C

BNJMPGLO

BNJMP44C

BNJMP02B

Line Analysis-Link Segment Level n

Link Configuration

Link Configuration

Link Configuration, alternate

NPDA-24B

NPDA-44A1

NPDA-44A2

NPDA-44A1

BNJMPLNA

BNJMP441 BNJMP442

BNJMP443

Link Configuration Summary-Level

Selection

 Link Data for SNA Controller

Link Problem Determination Aid (LPDA-1) Data

Link Problem Determination Aid (LPDA-1) LDM Data

NPDA-LSLS

NPDA-23A

NPDA-52A

NPDA-52AL

BNJMPLSL

BNJMP23A

BNJMP52A

BNJMP52L

(LPDA-2) Data Link Segment Level 1

(LPDA-2) Data Link Segment Level 1, alternate

(LPDA) Data Link Segment Level 2

NPDA-52B

NPDA-52B

NPDA-52C

BNJMP52B

BNJMP522

BNJMP52B

Link Status and Test Results

Link Status and Test Results for LDM

LPDA-1 Command Menu

LPDA-2 Command Menu

Menu

NPDA-24A

NPDA-24AL

NPDA-LPDA1

NPDA-LPDA2

NPDA-01A

BNJMP24A

BNJMP24L BNJMPLP1

BNJMPLP2

BNJMP01A

Modem and Line Status Modem and Line Parameters Link Segment

Level n

NPDA-22B, page 1 BNJMPML1

Modem and Line Status Remote Modem Interface-Remote Device

Status-Link Segment Level n

NPDA-22B, page 2 BNJMPML2

Modem and Line Status Configuration Summary, Link Segment

Level n

NPDA-22B, page 3 BNJMPML3

Most Recent Events

Most Recent Statistical Data

Most Recent Statistical Data

Most Recent Statistical Data

Most Recent Statistical Data

Most Recent Statistical Data

NPDA-41A

NPDA-51E NPDA-51F

NPDA-51G

NPDA-51H NPDA-51I

BNJMP41A

BNJMP51E BNJMP51F

BNJMP51G

BNJMP51H BNJMP51I

Color Maps

190 Customization Guide

Table 20. Color Maps for Hardware Monitor Panels (continued)

Panel Name Panel Number Color Map

Most Recent Statistical Data

Most Recent Statistical Data for Printer

Most Recent Statistical Data for Tape

Most Recent Traffic Statistics

Most Recent Traffic Statistics for BSC/SS Station

NPDA-51B

NPDA-51D

NPDA-51C

NPDA-51A

NPDA-51A

BNJMP51B BNJMP51B

BNJMP51B

BNJMP51A

BNJMP51A

Most Recent Traffic Statistics for BSC STA. w/LPDA

Most Recent Traffic Statistics for Channel Attached STA

Most Recent Traffic Statistics for Local CTRL

NPDA-51A

NPDA-51A

NPDA-51A

BNJMP51A

BNJMP51A

BNJMP51A

Most Recent Traffic Statistics for SDLC

Station

Most Recent Traffic Statistics for SDLC STA. w/LPDA

Multiple Entries for Selected Resource

Overwrite Map

NPDA-51A

NPDA-51A

NPDA-70A (all

displays)

BNJMP51A

BNJMP51A

BNJMP70A

BNJOVERW

Recommended Action for Selected Event

Recording and Viewing Filter Status

Release Level for SNA Controller

Remote DTE Interface Status

Remote DTE Interface Status for LDM

NPDA-BNIxxxyyy

NPDA-20A,20B

NPDA-21A

NPDA-25A

NPDA-25AL

BNJMP45A

BNJMP20A

BNJMP21A

BNJMP25A

BNJMP25A

Remote Self-Test Results

Remote Self-Test Results for LDM

Reported Resource Hardware

Reported Resource Software Product

Screen Control/Help

Screen Control/Help

NPDA-22A

NPDA-22AL

NPDA-44B NPDA-44B

NPDA-02A, page 1

NPDA-02A, page 2

BNJMP22A

BNJMP22L BNJMP44B

BNJMP4BS

BNJMP2A1

BNJMP2A2

Sender Hardware Product ID

Sender Software Product ID

Statistical Counter Detail Display, page 1

Statistical Counter Detail Display, page n

Statistical Detail

Statistical Detail

Statistical Detail Display for Ethernet

Statistical Detail Menu

NPDA-44B NPDA-44B

NPDA-54D

NPDA-54D

NPDA-53E NPDA-53F

NPDA-53KA

NPDA-53R

BNJMP4BH

BNJMP4BS BNJMP541

BNJMP54N

BNJMP53E BNJMP53F

BNJMP53K

BNJMP43R

Statistical Detail

Menu for BSC

Statistical Detail Menu for SDLC

TEST Information Display

Total Events

Total Statistical Data

NPDA-53R

NPDA-53R

NPDA-02D

NPDA-40A

NPDA-50A

BNJMP43R

BNJMP43R

BNJMP02D

BNJMP40A

BNJMP50A

Transmit Receive

Test-Link Segment Level n

Upstream Member of Token-Ring Fault Domain

NPDA-25B NPDA-44B BNJMPTRT

BNJMP4BH

Color Maps

Appendix A. Color Maps for Hardware Monitor Panels 191

Color Maps

192 Customization Guide

Appendix B. NetView Macros and Control Blocks

The macros and control blocks identified in this appendix are provided by the

NetView program as programming interfaces for customers.

 Attention: Do not use as programming interfaces any NetView macros other than

those identified in this appendix.

General-Use Programming Interface Control Blocks and Include Files

The following control blocks and include files are provided as general-use

programming interfaces.

 Name Use

DSIBC NetView Bridge HLL C include file

DSIBCCALL NetView Bridge HLL C service routine definition

DSIBCCNM NetView Bridge HLL C return codes

DSIBCHLB NetView Bridge HLL C mapping of DSIHLB

DSIBPCNM NetView Bridge HLL PL/I return codes

DSIBPHLB NetView Bridge HLL PL/I mapping of DSIHLB

DSIBPHLS NetView Bridge HLL PL/I service routine definitions

DSIBPLI NetView Bridge HLL PL/I include file

DSIC Main HLL C include file

DSICCALL HLL C service routine definitions

DSICCNM HLL C return codes

DSICCONS HLL C constants

DSICHLB HLL C mapping of DSIHLB

DSICORIG HLL C origin block mapping

DSICPRM HLL C NetView bridge parameter block

DSICVARC HLL C varying length character strings

DSIPCNM HLL PL/I return codes

DSIPCONS HLL PL/I constants

DSIPHLB HLL PL/I mapping of DSIHLB

DSIPHLLS PL/I definitions for HLL service routines

DSIPLI Main HLL PL/I include file

DSIPORIG HLL PL/I origin block mapping

DSIPPRM HLL PL/I NetView bridge parameter block

EKG1ACCB PL/I RODM access block

EKG1ENTB PL/I RODM entity access information block

EKG1FLDB PL/I RODM field access information block

EKG1IADT PL/I abstract data types

EKG1IEEP PL/I external entry point declaration

EKG1IINC PL/I include statements

EKG1LOGT PL/I log record type definitions

EKG1TRAB PL/I RODM transaction information block

EKG11101 PL/I function block for EKG_Connect

EKG11102 PL/I function block for EKG_Disconnect

EKG11201 PL/I function block for EKG_Checkpoint

EKG11202 PL/I function block for EKG_Stop

EKG11302 PL/I function block for EKG_CreateClass

EKG11303 PL/I function block for EKG_DeleteClass

EKG11304 PL/I function block for EKG_CreateField

EKG11305 PL/I function block for EKG_DeleteField

© Copyright IBM Corp. 1997, 2007 193

Name Use

EKG11306 PL/I function block for EKG_CreateSubfield

EKG11307 PL/I function block for EKG_DeleteSubfield

EKG11401 PL/I function block for EKG_ChangeField

EKG11402 PL/I function block for EKG_SwapField

EKG11403 PL/I function block for EKG_ChangeSubfield

EKG11404 PL/I function block for EKG_SwapSubfield

EKG11405 PL/I function block for EKG_LinkTrigger

EKG11406 PL/I function block for EKG_LinkNoTrigger

EKG11407 PL/I function block for EKG_UnLinkTrigger

EKG11408 PL/I function block for EKG_UnLinkNoTrigger

EKG11409 PL/I function block for EKG_CreateObject

EKG11410 PL/I function block for EKG_DeleteObject

EKG11411 PL/I function block for EKG_RevertToInherited

EKG11412 PL/I function block for EKG_AddNotifySubscription

EKG11413 PL/I function block for EKG_DeleteNotifySubscription

EKG11415 PL/I function block for EKG_TriggerNamedMethod

EKG11416 PL/I function block for EKG_TriggerOIMethod

EKG11417 PL/I add object deletion notification subscription

EKG11418 PL/I delete object deletion notification subscription

EKG11501 PL/I function block for EKG_QueryField

EKG11502 PL/I function block for EKG_QuerySubfield

EKG11503 PL/I function block for EKG_QueryEntityStructure

EKG11504 PL/I function block for EKG_QueryFieldStructure

EKG11505 PL/I function block for EKG_QueryFieldID

EKG11506 PL/I function block for EKG_QueryFieldName

EKG11507 PL/I function block for EKG_QueryNotifyQueue

EKG11508 PL/I query multiple subfields

EKG11509 PL/I locate

EKG11510 PL/I function block for EKG_QueryResponseBlockOverflow

EKG11600 PL/I function block for EKG_ExecuteFunctionList

EKG12001 PL/I function block for EKG_QueryFunctionBlockContents

EKG12002 PL/I function block for EKG_LockObjectList

EKG12003 PL/I function block for EKG_UnlockAll

EKG12004 PL/I function block for EKG_ResponseBlock

EKG12005 PL/I function block for EKG_SendNotification

EKG12006 PL/I function block for EKG_SetReturnCode

EKG12007 PL/I function block for EKG_WhereAmI

EKG12008 PL/I function block for EKG_OutputToLog

EKG12009 PL/I function block for EKG_MessageTriggeredAction

EKG12011 PL/I function block for EKG_QueryObjectName

EKG21415 PL/I response block for EKG_TriggerNamedMethod

EKG21416 PL/I response block for EKG_TriggerOIMethod

EKG21501 PL/I response block for EKG_QueryField

EKG21502 PL/I response block for EKG_QuerySubfield

EKG21503 PL/I response block for EKG_QueryEntityStructure

EKG21504 PL/I response block for EKG_QueryFieldStructure

EKG21505 PL/I response block for EKG_QueryFieldID

EKG21506 PL/I response block for EKG_QueryFieldName

EKG21507 PL/I response block for EKG_QueryNotifyQueue

EKG21508 PL/I query multiple subfields

EKG21509 PL/I locate

EKG21510 PL/I response block for EKG_QueryResponseBlockOverflow

EKG22001 PL/I response block for EKG_QueryFunctionBlockContents

EKG22007 PL/I response block for EKG_WhereAmI

NetView Macros and Control Blocks

194 Customization Guide

Name Use

EKG22011 PL/I response block for EKG_QueryObjectName

EKG3ACCB C/370™ RODM access block

EKG3CADT C/370 RODM abstract data types

EKG3CEEP C/370 external entry point declaration

EKG3CINC C/370 include statements

EKG3CLOG C/370 log record definitions

EKG3ENTB C/370 RODM entity access information block

EKG3FLDB C/370 RODM field access information block

EKG3TRAB C/370 RODM transaction information block

EKG31101 C/370 function block for EKG_Connect

EKG31102 C/370 function block for EKG_Disconnect

EKG31201 C/370 function block for EKG_Checkpoint

EKG31202 C/370 function block for EKG_Stop

EKG31302 C/370 function block for EKG_CreateClass

EKG31303 C/370 function block for EKG_DeleteClass

EKG31304 C/370 function block for EKG_CreateField

EKG31305 C/370 function block for EKG_DeleteField

EKG31306 C/370 function block for EKG_CreateSubfield

EKG31307 C/370 function block for EKG_DeleteSubfield

EKG31401 C/370 function block for EKG_ChangeField

EKG31402 C/370 function block for EKG_SwapField

EKG31403 C/370 function block for EKG_ChangeSubfield

EKG31404 C/370 function block for EKG_SwapSubfield

EKG31405 C/370 function block for EKG_LinkTrigger

EKG31406 C/370 function block for EKG_LinkNoTrigger

EKG31407 C/370 function block for EKG_UnLinkTrigger

EKG31408 C/370 function block for EKG_UnLinkNoTrigger

EKG31409 C/370 function block for EKG_CreateObject

EKG31410 C/370 function block for EKG_DeleteObject

EKG31411 C/370 function block for EKG_RevertToInherited

EKG31412 C/370 function block for EKG_AddNotifySubscription

EKG31413 C/370 function block for EKG_DeleteNotifySubscription

EKG31415 C/370 function block for EKG_TriggerNamedMethod

EKG31416 C/370 function block for EKG_TriggerOIMethod

EKG31417 C/370 add object deletion notification subscription

EKG31418 C/370 delete object deletion notification subscription

EKG31501 C/370 function block for EKG_QueryField

EKG31502 C/370 function block for EKG_QuerySubfield

EKG31503 C/370 function block for EKG_QueryEntityStructure

EKG31504 C/370 function block for EKG_QueryFieldStructure

EKG31505 C/370 function block for EKG_QueryFieldID

EKG31506 C/370 function block for EKG_QueryFieldName

EKG31507 C/370 function block for EKG_QueryNotifyQueue

EKG31508 C/370 query multiple subfields

EKG31509 C/370 locate

EKG31510 C/370 function block for EKG_QueryResponseBlockOverflow

EKG31600 C/370 function block for EKG_ExecuteFunctionList

EKG32001 C/370 function block for EKG_QueryFunctionBlockContents

EKG32002 C/370 function block for EKG_LockObjectList

EKG32003 C/370 function block for EKG_UnlockAll

EKG32004 C/370 function block for EKG_ResponseBlock

EKG32005 C/370 function block for EKG_SendNotification

EKG32006 C/370 function block for EKG_SetReturnCode

EKG32007 C/370 function block for EKG_WhereAmI

NetView Macros and Control Blocks

Appendix B. NetView Macros and Control Blocks 195

Name Use

EKG32008 C/370 function block for EKG_OutputToLog

EKG32009 C/370 function block for EKG_MessageTriggeredAction

EKG32011 C/370 function block for EKG_QueryObjectName

EKG41415 C/370 response block for EKG_TriggerNamedMethod

EKG41416 C/370 response block for EKG_TriggerOIMethod

EKG41501 C/370 response block for EKG_QueryField

EKG41502 C/370 response block for EKG_QuerySubfield

EKG41503 C/370 response block for EKG_QueryEntityStructure

EKG41504 C/370 response block for EKG_QueryFieldStructure

EKG41505 C/370 response block for EKG_QueryFieldID

EKG41506 C/370 response block for EKG_QueryFieldName

EKG41507 C/370 response block for EKG_QueryNotifyQueue

EKG41508 C/370 query multiple subfields

EKG41509 C/370 locate

EKG41510 C/370 response block for EKG_QueryResponseBlockOverflow

EKG42001 C/370 response block for EKG_QueryFunctionBlockContents

EKG42007 C/370 response block for EKG_WhereAmI

EKG42011 C/370 response block for EKG_QueryObjectName

FLBTREM C/370 exception view update parameter structure

FLBTRSM C/370 status change parameter structure

The following macros are provided as general-use programming interfaces.

 Name Use

CNMALTDATA Alter data on a queue

CNMAUTOTAB Invoke automation table

CNMCLOSMEM Close NetView partitioned data set

CNMCODE2TXT Code point translation

CNMCOMMAND Invoke NetView commands

CNMCOPYSTR Copy storage

CNMETINIT Initialize the server support

CNMETNEXT Get next transaction request

CNMETQUIESCE Quiesce the database

CNMETREADY Ready for next transaction

CNMETRPARM Get transaction request

CNMETTERM Terminate the Server support

CNMETWAIT Wait for a transaction request

CNMGETATTR Query message attributes

CNMGETDATA Data queue manipulation

CNMGETPARM Get transaction reply parameters

CNMHREGIST High performance transport application registration

CNMHSENDMU Send high performance message unit

CNMI CNMI access under a DST

CNMINFOC Query NetView character information

CNMINFOI Query NetView integer information

CNMKEYIO Keyed file access under a DST

CNMLOCK Control a lock

CNMNAMESTR Named storage

CNMOPENMEM Open NetView partitioned data set

CNMOPREP Resource object data manager

CNMPRSMDB Process message data block

CNMREADMEM Read NetView partitioned data set

CNMREGIST Application registration

CNMSCOPECK Check command authorization for security

NetView Macros and Control Blocks

196 Customization Guide

Name Use

CNMSENDMSG Send message or command

CNMSENDMU Send message unit

CNMSENDSTR Send transaction replay to NetView requester

CNMSENDTR Send transaction request to database server

CNMSSCAN Parse or convert character string

CNMSTRCELL Storage cell

CNMSTRPOOL Storage pool

CNMVARPOOL Set or retrieve variables

DUIFEDST Assembler macro

Product-Sensitive Programming Interfaces

The following control blocks are provided as product-sensitive programming

interfaces.

 Name Use

AAUTISAW Internal session awareness record

AAUTLOGR Structure map for NetView SMF log record

BNJTBRF Batch record format table

DSIAIFRO Automation internal function request object extension vector

DSIASYPN Asynchronous panel parameter list

DSICBH Control block header

DSICWB Command work block

DSIDSB Data services block

DSIDSRB Data services request block

DSIDTR Data transport Request block

DSIELB External logging block

DSIID NetView level identifier

DSIIFR Internal function request

DSILOGDS NetView log DSECT

DSIMVT Main vector table

DSIPDB Parse descriptor block

DSISCE System command entry

DSISCT System command table (include only)

DSISVL Service routine vector list (include only)

DSISWB Service work block

DSITECBR Branch table of ECB processor load module

DSITIB Task information block

DSITVB Task vector block

DSIUSE Installation exit parameter list

DUITRXCM RSM resource command support for XITCM exit

DUITSTAT RSM resource status information for XITST exit

The following macros are provided as product-sensitive programming interfaces.

 Name Use

DSIAUTO Automation services

DSIBAM Build automation message

DSIBAMKW Build automation message keyword

DSICBS Control block services

DSICES Command entry services

DSICVTHE Convert to hex

DSIC2T Translate alert code point to text

NetView Macros and Control Blocks

Appendix B. NetView Macros and Control Blocks 197

Name Use

DSIDATIM Date and time

DSIDEL Delete user-defined module

DSIDKS Disk services

DSIFIND Find long-running command storage

DSIFRE Free storage

DSIFREBS Free buffer structure service

DSIGET Get storage

DSIGETDS Retrieve messages

DSIHREGS High-performance registration

DSIHSNDS High-performance send

DSIKVS Keyword/value services

DSILCS Obtain/release control blocks

DSILOD Load user-defined module

DSIMBS Message buffer services

DSIMDS Message definition services

DSIMMDBS Message data block service

DSIMQS Message queuing services

DSINOR Resource object data manager d

DSIPAS Parameter/alias services

DSIPOP Remove long-running command

DSIPOS ECB post services

DSIPRS Parsing services

DSIPSS Presentation services

DSIPUSH Establish long-running command

DSIQOS Query operator services

DSIQRS Query resource services

DSIRDS Resource definition services

DSIRXCOM Access REXX variables (VM only)

DSIRXEBS Get an EVALBLOK

DSISRCMV Search for subvector/subfield

DSISYS Operating system indicator

DSITECBS Manage a dynamic ECB list for DSTs

DSIVARS Global Variable Access

DSIWAT ECB wait services

DSIWCS Write console services

DSIWLS Write log services

DSIZCSMS CNM data services

DSIZVSMS VSAM data services

DSI6REGS Registration services

DSI6SNDS Send services

NetView Macros and Control Blocks

198 Customization Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1997, 2007 199

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

2Z4A/101

11400 Burnet Road

Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Programming Interfaces

This publication documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of Tivoli NetView for z/OS.

200 Customization Guide

Trademarks

IBM, the IBM logo, Advanced Peer-to-Peer Networking, AIX, AS/400,

BookManager, Candle, C/370, , DB2, MVS, NetView, OMEGAMON, OpenEdition,

OS/2, OS/390, REXX, System/390, Tivoli, Tivoli Enterprise, Tivoli Enterprise

Console, VSE/ESA, VTAM, WebSphere, z/OS, z/VM, and zSeries are trademarks

or registered trademarks of International Business Machines Corporation in the

United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Java and Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 201

202 Customization Guide

Index

Special characters
&CGLOBAL 43

&CUR 34, 57

&SUPPCHAR 49

&TGLOBAL 43

&VIEWAID 50

&VIEWCOLS 52

&VIEWCURCOL 50

&VIEWCURROW 50

&VIEWICCOL 50

&VIEWICROW 50

&VIEWROWS 52

&WAIT 108

A
access method 5, 12

accessibility xiv

Acrobat Search command (for library search) xiii

ACTION command list 83, 87

ACTION statement, SCRNFMT 28

activate screen format definition 27

actual panel name
adding 81

changing panel text 80

adding functions 3

AID (attention identification) information 50

alert adapter service
Event/Automation Service 111

alert-to-trap service
Event/Automation Service 111

alerts
description 1, 93

generic
build panel 94

description 93

modify 77

NMVT 92

recommended action code point 85

record 77

reference documentation, table 4

sample record 94

Tivoli-supplied alert table 94

message 77

nongeneric
messages 82

migration purposes 92

modify 77

sender 87

user-defined 92, 93

Alerts-Dynamic panel 82

Alerts-History panel 77, 82

Alerts-Static panel 77, 82

alias names
definition 1

reference documentation, table 4

alias panel name
adding 81

determining 77, 78

application management instrumentation 167

application, performance-critical 13

APPLID NetView control variable 44

assembled command procedure 13

attribute
symbols 38

variables 40

audible alarm 87

automated operations
definition 1

NetView automation 1

automation table
setting message color and highlighting 30

VPDXDOM command list 106, 107

autotask 109

B
BGNSESS FLSCN command 46

block ID 78

BNJALxxx sample table 80

BNJBLKID sample table 79

BNJDNUMB 84

BNJDSERV task 104

BNJPNL2 DD statement 86

BNJPNL2 definition statement 104

BNJPROMP (prompt highlight token table) 91

BNJRESTY member 104

BNJwwwww code point members 86

BROWSE command, view help 66

C
CANCEL option, UNIQUE command 49

class definition statement files 122

CMD command 47

CMD HIGH 57

CMDLINE statement, SCRNFMT 30

CNM944I message 43

CNMI service 5, 12

CNMKEYS, modifying 25

CNMPNL1 DD statement 70

CNMS1101 sample 60

CNMSRESP source panel example 62

CNMSTYLE 167

CNMVARS 43

code point
alert description (BNJ92UTB) 101

description 1

detail data (BNJ82UTB) 101

failure cause (BNJ96UTB) 101

install cause (BNJ95UTB) 101

probable cause (BNJ93UTB) 101

recommended action (BNJ81UTB) 86, 101

user cause (BNJ94UTB) 101

code, VIEW command 35

color and highlighting fields, control 38

color buffer 88, 91

color maps
BNJOVERW 88

hardware monitor panel 189

© Copyright IBM Corp. 1997, 2007 203

color maps (continued)
list 189

map element 88

repetition factor option 90

repetition map element 90

sample 88

variable row 90

color, panel text 31

column headings, NCCF panel
control tags, PREFIX and NOPREFIX statements 28

customizing, COLUMNHEAD statement 28

COLUMNHEAD statement, SCRNFMT 28

command area, NCCF panel 30

command buffers 9

command entry indicator, NCCF panel 30

command facility console 104

command facility panel attributes 27

command facility panel, customizing 27

command help
copying 66

locating source files 65

modifying 69

storing 70

command line 57

command lists
error message 106

modifying 36

variable 6, 34

writing 36

command procedure, issuing 46

command processor, interface 9, 11

commands
data services 10

immediate 9

long-running 9

COMPAT option
definition 35

compiled language 13

compound symbols in source panels 45

concatenated user library 93

control blocks
access 13

general-use 193

product-sensitive 193

control program text title 101

control variable 43, 44

conventions
typeface xv

CREATE option 106

current date area, NCCF panel 28

customization, areas 1

customizing 27

CNMKEYS 25

IBM-supplied VPD command list 108

immediate message line 24

NCCF panel 27

CMDLINE statement 30

column headings 28

COLUMNHEAD statement 28

command area 30

command entry indicator 30

current date area 28

domain id area 28

held and action message area 29

held messages, warning 29

HELD, ACTION, NORMAL, and NQMAX

statements 28

customizing (continued)
NCCF panel (continued)

HOLDPCNT statements 29

IMDAREA statement 30

immediate message area 30

INDENT and MLINDENT statements 29

indentation 29

LASTLINE statement 30

limitations 27

lock/unlock indicator 30

LOCKIND statement 30

operator id area 28

output area 28

separator line 30

status area 28

time area 28

title area 28

TITLE statement 28

TITLEDATE statement 28

TITLEDOMID statement 28

TITLEOPID statement 28

TITLESTAT statement 28

TITLETIME statement 28

PF keys 24

customizing hardware monitor displayed data
alert message 77, 82

color and highlighting
modifying color map 88

prompt highlight token 91

selecting color map 88

modifying hardware monitor panel
actual, alias panel name 77

adding actual or alias name 81

changing alias to actual 80

changing panel text 80

deleting actual or alias name 81

determining panel name 77

overlaying recommended action number 83

user interface
BNJDNUMB 84

BNJwwwww 86

using NMVT support for user-written programming
adding or modifying resource type 104

building generic alert panel 94

modifying generic code point tables 101

table format 101

D
data file 6

data services task (DST) subtask 8

DCE (data communication equipment) 105, 106

DEFAULTS command, activate screen format definition 27

designing functions
choosing languages

introduction 12

logging 15

performance 13

identifying conceptual component
adding optional task 8

collecting data 5

data file 5

data storage and record 6

defining transaction 10

exit and command 10

installation exit 5

operator command and message 6

204 Customization Guide

designing functions (continued)
identifying conceptual component (continued)

operator presentation 6

service routine 5

task structure 7

designing HTML files
Web application server 179

detail data code point 93

direct NNT session 108

direct OST session 108

directory list of panel names 78

directory names, notation xv

displayed data, hardware monitor 77

displaying
special attributes 39

documentation for customizing 3

domain id area, NCCF panel 28

DRD (dynamic reconfiguration deck) 107

DSIAMIAT 167

DSIAMII 168

DSIELTSK 107

DSIMDS macro 83, 93

DSIPOP 49

DSIPUSH 46, 49

DST (data services task) subtask 8

dynamic reconfiguration deck (DRD) 107

E
E/AS 111

configuration files 117

defaults 112

overview 111

starting 112

education
see Tivoli technical training xiv

embed flag 103

END record 106, 107

environment variables, notation xv

event detail panel 77, 78, 82

event receiver service
Event/Automation Service 111

Event/Automation Service 111

configuration files 117

defaults 112

overview 111

starting 112

exit routine, installation 13

exit, installation 5

EXTEND option
definition 35

F
filter

definition 1

hardware monitor 1

messages 1

reference documentation, table 4

focal point VPD collection 107

full-screen panel, display 31

functional extension 7

functions, design and implement 1

G
GENALERT command 94

general-use programming interfaces 193

generic alert code point 77

generic alert record 77

global variable 43, 60

GLOBALV 43

GO command 14

group control system 7

H
HALT subroutine 49

hardware monitor panels
altering text

color 87

highlighting 87

intensity 87

audible alarm 87

determining a panel name 77

displayed data 77

displays, list 189

mapping NMVT 92

modifying panel 77

Recommended Action panel 83

hardware product identifier 85

held and action message area, NCCF panel 29

held messages, NCCF panel warning 29

HELD statement, SCRNFMT 28

HELPDESK, changing 69

HELPMAP, searching 70

hierarchy complete 97

highlight fields, control color 38

highlight panel text 31

HOLDPCNT statement, SCRNFMT 29

HOLDWARN statement, SCRNFMT 29

host access class library 175

I
IBM Tivoli Enterprise Console

customizing 170

IEBUPDTE utility 81

IEHPROGM utility 81

IHSAEVNT 112

IMDAREA statement, SCRNFMT 30

immediate message area, NCCF panel 30

immediate message line, customizing 24

INDENT statement, SCRNFMT 29

indent, NCCF panel 29

index for searching the library xiii

INITAMI 169, 173

INITAMON 173

input field 55

INPUT keyword 50

INPUT option
definition 35

input value 35

input-capable
fields 52

INPUT 57

variable 50

installation exit
interface 5

programs 10

routine 5

Index 205

installation exit (continued)
routine. 13

setting message color and highlighting 30

instrumentation 167

considerations 167

customizing 167

messages 167

starting 169

instrumentation, stopping 170, 173

inventory data, collecting 105

L
languages, choosing 12

LASTLINE statement, SCRNFMT 30

Launch Procedures task 180

library search (Acrobat Search command) xiii

limitations
background message color, 3270 30

customizing NCCF panel 27

displaying held messages 29

NORMQMAX statement value 29

setting message default colors 28

link-edit load module name 93

links
Web application portfolio, adding 179

LOADCL command 13

local variable, REXX 44

lock/unlock indicator, NCCF panel 30

LOCKIND statement, SCRNFMT 30

logging facilities 6

logging method 15

LookAt message retrieval tool xii

LPDA-2 architecture 105

M
macros, product-sensitive 197

managing additional component 3

manuals
see publications ix, xiii

message adapter service
Event/Automation Service 111

message buffers 9

message color default value, specifying, SCRNFMT 27

message help
copying 66

locating source files 65

modifying 69

naming convention 65

storing 70

message retrieval tool, LookAt xii

messages
color and highlighting 30

default colors 28

held and action area, NCCF panel 29

held, NCCF panel warning 29

queued for later display 29

specifying infinite queues 29

migration 92

MINOR option 46

MLINDENT statement, SCRNFMT 29

modifying
CNMKEYS 25

existing function 3

immediate message line 24

modifying (continued)
online help

command 69

message 69

procedures 66

regular 69

PF keys 24

modifying SPCS and NAM command lists
customization considerations 108

NAM command list 105

vital product data (VPD) collection
focal point NetView 107

single NetView domain 107

single physical unit 106

most recent events panel
changing Event Description: Probable Cause text 82

identifying resources 77

MSG option
dynamic update capabilities 59

RESOURCE command output usage 60

MVS MPF table, setting message color and highlighting 30

N
named variable 47

naming convention
message help 65

naming online help 70

National Language Support (NLS)
kanji feature 2

message translations 2

reference documentation, table 4

NCCF panel, customizing 27

NetView
automation table 106, 107

component, definition 47

log 43

panel library 93

NetView 3270 management console
host access class library 175

NetView command facility panel 27

network
log 15

management data 5

qualified procedure correlation identifier 101

network asset management (NAM) command list
modifying 108

VPDACT command list 106

VPDDCE command list 106

VPDLOGC command list 106

VPDPU command list 106

VPDXDOM command list 106

new management function 3

new online help
creating 69

storing 70

structuring conventions 69

NMVT (network management vector transport) 92

NOINPUT option
creating rollable components 47

definition 35

displaying online help panels 36

return command line input 57

NOMSG option 37

nongeneric alerts 92

NOPREFIX statement, SCRNFMT 28

NORMAL statement, SCRNFMT 28

206 Customization Guide

NORMQMAX statement, SCRNFMT 28

extreme value, calling attention to 29

minimum value 29

OST-NNT cross-domain sessions 29

printers 29

queueing messages for later display 29

specifying infinite queues 29

values 29

notation
environment variables xv

path names xv

typeface xv

O
online help

copying 66

creating new help 69

highlighting attributes 66

locating source files 65

modifying
command help 69

procedure 66

regular help 69

source 69

naming 70

organization 65

source 66

store procedures 70

writing 69

online help panels
color attributes 39

highlighting attributes 39

online publications
accessing xiii

operator command 6

operator command interface 47

operator control and security
command authorization 2

reference documentation, table 4

span of control 2

operator id area, NCCF panel 28

operator interface 7

OPID NetView control variable 43, 44

OPT (optional) subtask 8

OPT task, adding 12

ordering publications xiii

output area, NCCF panel 28

OVERRIDE command, activate screen format definition 27

overwrite global variable 44

P
panel

data stream 70

definition statement 43

definition, using with VIEW 31

hardware monitor 77

partitioned data set 65

record length 69

variables 40

partial command, predefining 57

path names, notation xv

PAUSE command 14

performance 13

PF keys, customizing 24

PF keys, using with VIEW 57

physical unit (PU) 105, 106

portfolio
links, adding 179

tasks, adding 179

PREFIX statement, SCRNFMT 28

preload
NetView command list. 13

REXX command list 13

probable cause code point 93

product-sensitive
control blocks 193

macros 197

product-set identification (PSID) 84

program function keys, using with VIEW 57

programming interfaces
general-use 193

product-sensitive 197

PROMOTE option, UNIQUE command 49

prompt highlight token table 91

PSID (product-set identification) 84

publications ix

accessing online xiii

ordering xiii

Q
queueing commands 47

R
recommended action number 83

Recommended Action panel 77, 78

record filters 1

record format, building 108

referencing commands
Web application server 179

referencing files
Web application server 179

regular help panel 65, 69, 70

repetition factor option 90

repetition map element 90

REQUEST/REPLY PSID architecture 105

RESDYN command list output example 61

RESET command 108

RESOURCE command 60

resource type
adding 104

modifying 104

return codes 37, 48, 50

REXX function CGI
Web application server 180

REXX programming language, local variable 44

REXX-generated HTML
Web application server 180

ROLL command 46

roll group 46, 49

rollable component
creating 47

REXX command procedure that drives 53

S
screen format definition (SCRNFMT)

command facility panel attributes 27

Index 207

screen format definition (SCRNFMT) (continued)
customizable fields

COLUMNHEAD line 28

command area 30

command entry indicator 30

current date 28

domain identifier 28

held and action message area 29

immediate message area 30

indentation 29

lock/unlock indicator 30

operator identifier 28

output area 28

separator line 30

system states 28

time of last display 28

title area 28

message color default value 27

SCRNFMT (screen format definition)
command facility panel attributes 27

customizable fields
COLUMNHEAD line 28

command area 30

command entry indicator 30

current date 28

domain identifier 28

held and action message area 29

immediate message area 30

indentation 29

lock/unlock indicator 30

operator identifier 28

output area 28

separator line 30

system states 28

time of last display 28

title area 28

message color default value 27

SCRNFMT statements
ACTION 28

CMDLINE 30

COLUMNHEAD 28

HELD 28

HOLDPCNT 29

HOLDWARN 29

IMDAREA 30

INDENT 29

LASTLINE 30

LOCKIND 30

MLINDENT 29

NOPREFIX 28

NORMAL 28

NORMQMAX 28

PREFIX 28

TITLE 28

TITLEDATE 28

TITLEDOMID 28

TITLEOPID 28

TITLESTAT 28

TITLETIME 28

search command, Acrobat (for library search) xiii

secondary extent 69, 86

sense code descriptions, customizing 73

separator line, NCCF panel 30

sequential data set 70

sequential logging
definition 2

reference documentation, table 4

service level reporter (SLR) 108

serviceable component identifier 85

session monitor data
definition 2

performance classes 2

reference documentation, table 4

response time monitor (RTM) 2

SHOWCODE command list 37

SMF log 5

SMF logging failure 106

SMF record format, changing 108

SMF record number 108

source, help
building 69

definition 66

locating 65

modifying 69

structure 69

viewing 66

source, helps
sample panel 32

specialized disk service 5, 12

START DOMAIN command 108

START record 106, 107

START VPDTASK 108

STARTCNM NPDA 104

status area, NCCF panel 28

STOP TASK 104

storing new or modified help 70

subcommands, VIEW 57

symbols, compound 45

system allocation 5, 12

system interface 7

T
task variable 14

task, operator station (OST) 7

tasks
Web application portfolio, adding 179

TERMAMI 170

TERMAMON 173

tilde definition 57

time area, NCCF panel 28

title area, NCCF panel 28

TITLE statement, SCRNFMT 28

TITLEDATE statement, SCRNFMT 28

TITLEDOMID statement, SCRNFMT 28

TITLEOPID statement, SCRNFMT 28

TITLESTAT statement, SCRNFMT 28

TITLETIME statement, SCRNFMT 28

Tivoli Enterprise Console
customizing 170

Tivoli Software Information Center xiii

Tivoli technical training xiv

training, Tivoli technical xiv

transaction program
command processor 10

installation exit 10

trap-to-alert service
Event/Automation Service 111

typeface conventions xv

208 Customization Guide

U
UNIQUE command 35, 48

UPPER command 47

user interface
BNJDNUMB 84

BNJwwwww 86

user subtask, writing 12

user table, defining
BNJ81UTB 101

BNJ82UTB 101

BNJ92UTB 101

BNJ93UTB 101

BNJ94UTB 101

BNJ95UTB 101

BNJ96UTB 101

sample 103

user-defined alert
generic 93

nongeneric 92

user-written functions
definition 2

reference documentation, table 4

V
variable row placement option 90

variables, compound 45

variables, notation for xv

vector transport, network management (NMVT) 92

VIEW command processor
attribute definition 38

code 35

COMPAT option 35

creating rollable components 47

definition statement 43

displaying error messages 37

displaying return codes 37

displaying variables in source panels 43

dynamic update capability 59

EXTEND option 35

finding global variables 43

full-screen input capability 50

global variable 43

INPUT option 35

input value 35

issuing from command procedure 46

managing command lines 62

managing PF keys 62

message data 36

MSG option 59

NOINPUT option 35

panel definition
attribute symbol 38

attribute variable 40

controlling color 38

controlling highlighting 38

return code 37

return command line input 57

subcommands 57

using 31

using PF keys 57

using SHOWCODE command list 37

using UNIQUE command 48

using UPPER command 47

VIEWAID variable 52

VIEW command, using 31

view filters 1

VIEWAID variable 52

VIEWCOLS variable 52

VIEWCURCOL variable 50

VIEWCURROW variable 50

VIEWICCOL variable 50, 51

VIEWICROW variable 50, 51

VIEWROWS variable 52

vital product data (VPD), definition 105

VPD command 106, 108

VPDACT command 106

VPDALL command 107

VPDDCE command entry 107

VPDLOGC command list 106, 107

VPDPU command entry 107

VPDTASK 106

VPDXDOM command list 106, 107

VSAM data service 5, 12

VTAM ACB Monitor
starting 173

VTAM CNMI 5

VTAM configuration member in VTAMLST 106, 107

VTAMLST 106

W
Web application

links, adding 179

tasks, adding 179

Web application server
designing HTML files 179

referencing files 179

REXX function CGI 180

REXX-generated HTML 180

Web sites
launching from Web application 180

X
XVAR 33, 46

Index 209

210 Customization Guide

����

File Number: S370/4300/30XX-50

Program Number: 5697–ENV

Printed in USA

SC31-8859-02

	Contents
	Figures
	About this publication
	Intended audience
	Publications
	IBM Tivoli NetView for z/OS library
	Prerequisite publications
	Related publications
	Accessing terminology online
	Using LookAt to look up message explanations
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support information
	Downloads
	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths
	Syntax Diagrams
	Position and Appearance of Syntax Elements
	Required Syntax Elements
	Optional Syntax Elements
	Default Keywords and Values
	Syntax Fragments
	Commas and Parentheses
	Abbreviations

	Chapter 1. Designing Functions
	Customization Areas
	Functions to Consider before Making Modifications
	Finding Customization Information
	Collecting Data
	Installation Exits
	Service Routines
	Data Files
	Operator Commands and Messages

	Data Storage and Recording
	Operator Presentation

	Tasks
	NetView Program as a System Application Program
	NetView Program Tasks
	Program Activity within a Task
	Queuing Work to NetView Program Tasks
	Message and Command Buffers
	Immediate Commands
	Long-Running Commands
	Data Services Commands

	Defining User-Written Programs on the Host: Exits and Commands
	Installation Exit Programs
	Command Processors and Command Lists

	Adding Optional Tasks to the NetView Program
	Choosing a Language
	Input and Output
	Performance
	Stability
	Testing
	Speed of Implementation
	REXX Versus the NetView Command List Language
	Language Choices by Function
	Logging
	Cross-Reference for Message and Environment Functions

	Customizing PF Keys and Immediate Message Line
	Modifying CNMKEYS

	Chapter 2. Customizing the NetView Command Facility Panel
	Using a Screen Format Definition
	Screen Format Definition Statements
	Message Color and Highlighting

	Chapter 3. Using the VIEW Command
	Creating Full-Screen Panels
	General Help Fields

	Coding the VIEW Command
	Return Codes from VIEW and BROWSE
	Displaying VIEW Return Codes with SHOWCODE
	Controlling Color and Highlighting of Fields
	Attribute Symbols
	Displaying Special Attributes
	Using the + Attribute
	Using the $ and the @ Attributes

	Attribute Variables

	Displaying Variables in Source Panels
	Compound Symbols
	Implementation Maximum

	Issuing Commands from Command Procedures
	Creating a Rollable Component with VIEW
	Using the UPPER Command
	Using the UNIQUE Command

	Full-Screen Input Capabilities
	Returning Command Line Input
	Using PF Keys and Subcommands with VIEW
	Using PF Keys and Subcommands with the NOINPUT Option
	Using PF Keys and Subcommands with the INPUT Option
	Using Settable PF Keys

	Dynamic Update Capabilities
	Sample of Panel Updating
	Changing Colors in Browse

	Chapter 4. Modifying and Creating Online Help Information
	Locating Help Source Files
	View-Based Help
	Window-Based Help

	Copying and Changing Help Source Files
	Storing Help Source Files
	HELPMAP Facility
	Displaying New Help Panels

	Chapter 5. Customizing Session Monitor Sense Descriptions
	Session Monitor Sense Codes
	Examples

	Chapter 6. Customizing Hardware Monitor Displayed Data
	Modifying Hardware Monitor Nongeneric Panels
	Determining a Panel Name
	Changing Panel Text
	Changing from Alias to Actual
	Deleting an Actual or Alias
	Adding an Actual or Alias

	Nongeneric Alert Messages
	Using the ACTION Command List
	Overlaying Recommended Action Numbers
	Modifying BNJDNUMB, BNJDNAME, and BNJwwwww
	BNJDNUMB
	BNJDNAME
	BNJwwwww

	Changing Color and Highlighting for Hardware Monitor Panels
	Selecting the Color Map
	Modifying the Color Map
	Prompt Highlight Tokens

	Using NMVT Support for User-Written Programming
	User-Defined Alerts (Nongeneric)
	NMVT-to-Panel ID Mapping
	Panel Formats

	User-Defined Alerts (Generic)
	Using the GENALERT Command

	Building Generic Alert Panels
	Alerts-Dynamic Panel
	Recommended Action for Selected Event Panel
	Event Detail Panel
	Modifying Generic Code Point Tables
	Table Formats
	Use of %INCLUDE Statements
	Example of BNJ92TBL Code Points Table
	Example of BNJ94TBL Code Points Table
	Activating the Modified Code Point Tables

	Adding or Modifying Resource Types

	Chapter 7. Modifying Network Asset Management Command Lists
	VPD Collection from a Single PU
	VPD Collection from a Single NetView Domain
	Focal Point VPD Collection
	Customization Considerations

	Chapter 8. Customizing the Event/Automation Service
	The Event/Automation Service: Overview
	Starting the Event/Automation Service
	Customizing the Initialization of the Event/Automation Service
	Defaults for Configurable Settings
	Customizing the Event/Automation Startup Parameters
	Customizing the Event/Automation Service Configuration Files
	Event/Automation Service Output
	Event/Automation Service Output Log Names
	Types of Event/Automation Service Output Data
	Format of Event/Automation Service Output Data
	Customizing Alert and Message Routing from NetView
	Running More Than One Event/Automation Service

	Advanced Customization - Translating Data
	Class Definition Statement Files
	Encoding Incoming Event Data
	Alert Adapter Service and Alert-to-Trap Service Data Encoding
	Alert-to-Trap Service Data Encoding
	Trap-to-Alert Service Data Encoding
	Event Receiver Service Data Encoding
	SELECT Segment of a Class Definition Statement
	SELECT Segment Evaluation

	FETCH Segment of a Class Definition Statement
	MAP Segment of a Class Definition Statement
	MAP_DEFAULT Section of the Class Definition Statement Files

	Message Format Files
	Encoding Incoming Event Data
	Format Specifications
	Map Rules
	%INCLUDE Statements

	Event Receiver Post-CDS Processing
	The Input Attribute List
	The Output Pseudo Event
	The Pseudo Event Class name
	The NMVT_TYPE event attribute
	The SV event attribute
	Disabling Hexadecimal String Translation
	Using Attribute List Data in the Output Subvector
	Automatic Subvector/Subfield Length Calculation
	The BUILD_SV31LIST Event Attribute
	The CONTINUE Slot
	The SF21 Slot
	Matching Multiple CDSs to Create the Pseudo Event
	The One-Pass Method
	The Multiple-Pass Method
	Building the NMVT
	Building the SV 31s Containing the Original Event
	Overriding the SF21 Codepoint
	Alert or Resolve
	Adding the User Subvectors
	Calculating the AlertID for SV 92
	An Example

	Translating ASCII Text Data
	Translating SNMP Non-String Data Types

	Trap-to-Alert Post-CDS Processing
	Advanced Customization - Trap-to-Alert Forwarding Daemon
	Detailed Example for Trap-to-Alert Conversion

	Alert-to-Trap Post-CDS Processing

	Chapter 9. NetView Instrumentation
	Considerations
	Customization
	Starting and Stopping Instrumentation
	Customizing the IBM Tivoli Enterprise Console
	ACB Monitor Customization
	Parts
	Defining a Focal Point
	Defining An Entry Point
	Starting the VTAM ACB Monitor
	Recovering a VTAM ACB Monitor Entry Point

	Stopping the VTAM ACB Monitor

	Chapter 10. Writing a Java Application for the NetView 3270 Management Console
	Writing a NetView 3270 Management Console Host Access Class Library Application
	Building Host Access Class Library Applications
	Source Code Preparation
	Compilation
	Running the HACL Application
	Helper Class

	Sample Applications

	Chapter 11. Designing HTML Files for the NetView Web Server
	Referencing Files and Commands
	Understanding the Base URL
	Referencing Workstation Files on the Web Application Server
	Referencing NetView Commands

	Adding Tasks and Links to the Portfolio
	Using REXX to Generate HTML

	Chapter 12. Customizing Using Common Base Events
	XML Formats
	CBE Format Rules

	Template File CNMSCBET
	Codepage considerations
	Predefined Variables

	Appendix A. Color Maps for Hardware Monitor Panels
	Appendix B. NetView Macros and Control Blocks
	General-Use Programming Interface Control Blocks and Include Files
	Product-Sensitive Programming Interfaces

	Notices
	Trademarks

	Index

